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Brain-Inspired Organic Electronics: Merging Neuromorphic
Computing and Bioelectronics Using Conductive Polymers

Imke Krauhausen, Charles-Théophile Coen, Simone Spolaor,* Paschalis Gkoupidenis,*
and Yoeri van de Burgt*

Neuromorphic computing offers the opportunity to curtail the huge energy
demands of modern artificial intelligence (AI) applications by implementing
computations into new, brain-inspired computing architectures. However, the
lack of fabrication processes able to integrate several computing units into
monolithic systems and the need for new, hardware-tailored training
algorithms still limit the scope of application and performance of
neuromorphic hardware. Recent advancements in the field of organic
transistors present new opportunities for neuromorphic systems and smart
sensing applications, thanks to their unique properties such as neuromorphic
behavior, low-voltage operation, and mixed ionic-electronic conductivity.
Organic neuromorphic transistors push the boundaries of energy efficient
brain-inspired hardware AI, facilitating decentralized on-chip learning and
serving as a foundation for the advancement of closed-loop intelligent
systems in the next generation. The biocompatibility and dual ionic-electronic
conductivity of organic materials introduce new prospects for biointegration
and bioelectronics. Their ability to sense and regulate biosystems, as well as
their neuro-inspired functions can be combined with neuromorphic
computing to create the next-generation of bioelectronics. These systems will
be able to seamlessly interact with biological systems and locally compute
biosignals in a relevant matter.

1. Introduction

Artificial intelligence (AI) applications have recently made an im-
pact in several fields of science and technology, ranging from
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image processing and health care, to au-
tonomous driving and text generation,
and the demand for such applications
is expected to increase in the coming
years. However, this AI revolution also
presents some “hidden costs” in terms
of computational resources and energy
requirements.[1]

Most of the modern AI applications are
implemented as software artificial neural
networks,[2] running on digital computers
where memory and computing units are
separated. The need for shuttling infor-
mation between these two units to per-
form computations (also known as the “Von
Neumann bottleneck”) is one of the main
causes for the high energy demands of
software artificial neural networks, espe-
cially when these consists of millions (or
even billions) of trainable parameters.[3]

Neuromorphic computing aims to ad-
dress these challenges by implementing AI
applications and artificial neural networks
in hardware systems. Drawing inspiration
from the architecture and functioning of
biological neural networks, neuromorphic
devices perform computations in memory,

bypassing the Von Neumann bottleneck and therefore reducing
time and energy demands. Despite several promising proof-of-
concept and small-scale implementations exist, fabrication, and
training of complex neuromorphic hardware still poses many
challenges, such as the integration and scale-up of several com-
puting units into monolithic systems and the need to co-design
training algorithms and hardware.

With recent advancements in the field of organic transistors
new opportunities for neuromorphic systems and smart sens-
ing applications arise.[4] The emerging organic devices and ma-
terials provide unique properties such as neuromorphic behav-
ior, mixed ionic-electronic conduction, low voltage operation,
and a flexible, stretchable, soft nature mimicking highly effi-
cient biological computing systems.[5–7] Fabrication techniques
based on solution processing enable large-scale implementa-
tions and offer cost-effective alternatives to conventional com-
plementary metal-oxide semiconductor (CMOS) manufacturing
processes.[8] Chemical synthesis facilitates the development of
novel or customized organic materials with improved, tailor-
made characteristics.[9,10]
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Moving further toward neuro-emulating hardware AI, or-
ganic transistors enable decentralized on-chip learning and
provide a platform for the next generation of closed-loop in-
telligent systems.[11,12] Because of their soft mechanics, they
also provide the mechanical ability to interact with and
be shaped by their environment that allows for wearable
patch devices, compliant implants and embodied mechanical
intelligence.

Organic materials also present novel prospects in terms of
biointegration and bioelectronics. Indeed, thanks to their bio-
compatibility and dual ionic-electronic conductivity, significant
breakthroughs have been made both in terms of sensing and
regulation of biosystems.[13–16] Additionally, organic devices have
shown neuro-inspired functions closely mimicking their biolog-
ical counterparts,[5,17–19] such as short-/long-term plasticity of
synapses or spiking behavior of neurons, which enables local pre-
processing of biological signal and a seamless communication
with biology.

When combined with neuromorphic computing, organic de-
vices could represent the next-generation of bioelectronics. Rang-
ing from point-of-care systems to implants and prosthesis, they
could be capable of sensing, computing, and regulating in situ in
a biologically relevant way. However, challenges such as mono-
lithic integration, fabrication scaling, and long-term stability
must be addressed before the development of these closed-loop
and self-adapting systems.

In this review, we highlight these challenges and emphasize
potential avenues for achieving greater device integration and re-
solving complex computing tasks. Initially, we offer an overview
of organic transistors and the methodologies employed in their
fabrication. Differently from previously published reviews, we
provide a non-exhaustive overview of published works focused on
real-life implementations of neuromorphic systems rather than
computational studies or simulated scenarios. We also suggest
new research directions to advance the field of organic neuro-
morphic computing, favoring a multi-disciplinary approach that
takes into account material properties, device and system archi-
tecture, and learning algorithms. In Section 4, we explore the in-
teractions between bioelectronic materials and living organisms,
examining their applications in neuro-inspired systems and, fol-
lowing up in Section 5 with the adoption of these systems to ac-
complish adaptive sensing and processing. In Section 6 we in-
vestigate how recent advancements in the field of AI can be ben-
eficial to the training and the architecture of brain-inspired sys-
tems. Ultimately, we propose strategies for the development of
a new generation of organic neuromorphic systems, and offer
insights into the future prospects of co-designing such systems
with learning algorithms.

2. Organic Transistors

The organic transistor architectures discussed in this review are
based on three-terminal devices with source, drain, and gate
metal electrodes (Figure 1a–c). Source and drain electrodes are
connected through an organic (semi-)conductor thin film oper-
ating as channel material. The gate electrode is used to mod-
ulate the electronic current flow inside the channel material
by doping or dedoping it with ions through a gate potential.
Commonly, we consider three main transistor types: organic

field effect transistor (OFET), electrolyte-gated organic field ef-
fect transistor (EGOFET) and organic electrochemical transistor
(OECT).

2.1. OFET

In an OFET (Figure 1a), the gate is separated from the channel
material by an insulator. This prevents the exchange of charges
between layers and leads to a formation of charge barriers at the
insulator interface if a voltage is applied at the gate. Charges of op-
posite polarity collect on the gate and channel side of the insula-
tor, which creates a parallel plate capacitor of insulator thickness.
Thus, doping and dedoping of the channel material is controlled
through the field effect of the internally created capacitor.[20]

A special type of OFET is the electrolyte-gated FET. The chan-
nel material is in direct contact with an electrolyte. Via a gate volt-
age, ions inside the electrolyte form a charge layer at the interface
of the channel material. Inside the channel, electronic charges of
opposite polarity accumulate. This leads to a high capacitance as
the distance between both charge barriers is determined by the
ionic radius.[21]

2.2. OECT

Similar to the EGOFET, the channel material is in direct con-
tact with an electrolyte. Through application of a gate voltage the
ions in the electrolyte are able to penetrate into the channel mate-
rial with (de-)doping occurring over the full volume of the chan-
nel (Figure 1b). Thus, the device is characterized by a volumet-
ric capacitance, which leads to significant higher amplification
and transconductance compared to OFET structures.[22] Materi-
als used for this device type are organic mixed ionic-electronic
conductors.[23]

2.3. EC-RAM

Since OECT have mixed conduction they display two differ-
ent time responses, ionic, and electronic, over different orders
of magnitude with hysteresis. This slow kinetics effect was
first exploited in a system to display device adaptivity simi-
lar to that of a biological synapse (Figure 2a,b). Since then,
many neuromorphic functions have been demonstrated for or-
ganic transistors.[5,17,18] Neuromorphic functions refer to brain-
inspired behaviors such as synaptic plasticity and spike-based in-
formation transfer (Figure 2c–g). Short-term plasticity in organic
neuromorphic devices is often shown through paired pulse facil-
itation. A train of pulses is applied at the gate, the conductance is
changed by the first pulse and this change is increased even more
by the following pulses if they follow closely after. The strength of
the conductance change also depends on the nature of the spike
and is influenced by spike duration, spike voltage/height and the
spike timing (Figure 2c–f). Long-term plasticity has also been
shown and refers to a more permanent change of conductance
that lasts for many seconds, minutes or even hours (Figure 2g).
This creates a non-volatile memory effect leading to the electro-
chemical random access memory (EC-RAM).
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Figure 1. Overview on organic-based transistors. Device physics (first column) behind different types of organic transistors, exemplary shown for gate
voltage Vg < 0 V: a) The organic field-effect transistor (OFET) forms a double layer of charges at the (semi-)conductor/insulator interface. b) The organic
electrochemical transistor (OECT) is defined by a volumetric capacitance meaning that ionic charges from the electrolyte/insulator can penetrate into
the channel material, a mixed ionic-electronic conductor. c) The electrochemical random access memory (EC-RAM) is able to trap charges inside the
channel material for longer times (i.e., by using a high resistance or switch at the gate) achieving long term plasticity that can be harnessed for in-memory
computing. Depending on the use case, different architectures of organic transistors (second column) are needed: d) A non-polarizable gate electrode
such as Ag/AgCl can easily be submerged in liquid electrolytes. e) Planar devices with the gate placed on the same plane as the source and drain contact
enable the use of a solid-state electrolyte, a necessity for fully-integrated circuits. f) The gate electrode can be functionalized by an additional layer on top
of the electrode. This layer can be of the same material as the channel or is chemically tuned to have unique properties for analyte detection. Different
patterning techniques can be used for the organic material (third column). g) The most common way is the manual peel-off of a sacrificial layer, leaving
however undesired material on the sidewalls. h) A sacrificial layer can deposited on top of the organic material and used as an etch mask during a dry
etching process. i) Direct UV patterning is also possible by either trapping the organic material in an interpenetrating network, or by directly cross-linking
the polymer chains together. j) Printing techniques, such as inkjet printing, are also suitable for organic material, allowing a low-cost and large-scale
fabrication. k) Semiconductor polymers can be polymerized in situ, by either applying an external voltage, or using metabolites for in vivo fabrication.

Based on the general OECT structure, organic neuromorphic
devices mainly differ by their probing conditions (Figure 1c). In
order to achieve stable, long-term retention of charges the gate
current is limited by a high resistance at the gate.[6] Addition-
ally, after applying a gate potential (write) the gate is disconnected
from the channel with a switch to prevent leakage of charges and
the drain current can be measured decoupled (read). By chang-
ing the layer thickness of the channel material a similar effect
can be achieved.[24] Innovative material concepts such as evolv-
able OECTs present new ways of separating between short-term
and long-term plasticity by providing different material mecha-
nisms for changing the conductance.[25]

2.4. Architectures

The electrodes and channel material can be stacked in different
configurations that are dependent on the fabrication methods
and the type of application. For top/bottom configuration, the
gate is placed above/below the channel material that connects the
planar source and drain contacts(top contact in Figure 1d). In a
fully planar layout, the gate contact is in-plane with the source
and drain contacts (Figure 1e,f). This is especially helpful for
wearable design or more intricate circuits and often simplifies
fabrication.[22] A recently adopted layout is a vertical configura-
tion where source and drain are stacked on top of each other.
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Figure 2. Synaptic behavior showing short-term and long-term plasticity. a) The biological synapse transfers a presynaptic voltage spike Vpre (action
potential) via the distribution of neurotransmitter. The neurotransmitter travel from the presynaptic neuron through the synaptic cleft into the postsy-
naptic neuron leading to the creation of a postsynaptic current Ipost. The synaptic strength is determined by the amount of ejected neurotransmitter and
postsynaptic receptors. b) The neuromorphic organic transistor behaves in a similar manner: When applying a gate voltage Vpre, ions are moved from
the presynaptic gate terminal into/out of the the channel changing the overall conductivity of the channel material. The resulting source-drain current
Ipost is therefore adapted through a change in conductivity representing the synaptic weight. The changes in the postsynaptic current Ipost depend on
c) the spike voltage, d) the spike duration, e) the spike number, f) the spike frequency also often referred to as spike timing dependent plasticity (STPD)
of the presynaptic voltage Vpre. If the change in the postsynaptic current Ipost is of a more permanent nature, this is called g) long-term plasticity.

They are only separated by a thin insulation layer that allows for
very short channel length.[26,27]

The gate electrode is ideally made from a non-polarizable ma-
terial such as Ag/AgCl (Figure 1d) to prevent a large voltage drop
at the gate/electrolyte interface. If this is not possible polarizable
metal electrodes (Pt, Au) are an alternative. It was also recently
shown that coating the metal electrodes with the organic poly-
mer poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PE-
DOT:PSS) helps to reduce the effect of polarization and allows a
similar OECT performance as Ag/AgCl electrodes.[28] The gate
electrode can also be covered with use-specific materials to let it
functions as a sensor or receptor for certain materials (Figure 1f).

The electrolyte contains the ions that induce (de-)doping of the
channel material. It can be a simple salt/water mixture or a more
complex fluid such as sweat or cell culture medium. An alterna-
tive to aqueous electrolyte are hydrogels or ionic liquids/gels.[6]

These also enable the fabrication of solid-state devices, which is
important for scalability and moving toward fully-integrated sys-
tems.

An architecture of multiple devices that is particularly rel-
evant for neuromorphic application is the crossbar array.[29,30]

Here, multiple inputs lines cross over with multiple output lines.
They are connected at the cross-points by (organic) transistors
(Figure 5n). Crossbar arrays allow an easy translation of artifi-
cial neural networks architecture into larger-scale circuits: each

weight of the networks is represented by one neuromorphic (or-
ganic) transistors.[4] More details and concrete implementations
are explained in Section 5.2.1.

3. Patterning of Organic Semiconductor

Patterning conductive polymers (CPs) has been one of the main
challenge toward miniaturization and scalability of organic de-
vices. As these materials are sensitive to conventional photore-
sists, traditional photolithography processes had to be adapted,
leading to poorer reproducibility, scalability, and resolution. In
the recent years however, the development of new material and
techniques, such as orthogonal photoresists and photopattern-
ing, have lead the way toward highly integrated organic circuits.
Moreover, additive manufacturing is one of the great strength
when using CPs, which can be printed using different tech-
niques, or even polymerized in situ.

3.1. Lift-Off

Lift-off process is a conventional microstructuring technique, tra-
ditionally used for patterning metallic interconnects. It relies on
depositing a sacrificial photoresist layer with an inverse pattern
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onto the substrate. The target material is then deposited and the
remaining sacrificial layer is stripped away. Lift-off has been used
for patterning organic materials, but remains extremely chal-
lenging due to poor chemical compatibility between the pho-
toresists and the conductive polymers. Nevertheless, different
workarounds have been developed.

Conventional sacrificial photoresists have been used to pat-
tern conductive polymers, such as poly(3-hexylthiophene-2,5-
diyl) (P3HT).[31] Instead of dissolving the CP into chloroform, a
solvent incompatible with most of commercially available pho-
toresists, the authors used xylene and successfully patterned
P3HT. Unfortunately, this technique cannot be adapted for ev-
ery organic material. PEDOT:PSS is for example not suited for
the majority of photoresists due to its acidity. To overcome this
issue, it is possible to pattern an interlayer of SU-8 below the PE-
DOT:PSS, before dissolving the unexposed SU-8.[32] This remain-
ing SU-8 interlayer may however cause issues for more com-
plex circuitry.

One of the main techniques to pattern organic materials has
been the physical lift-off of a sacrificial layer.[33] It relies on the
deposition of two parylene layers separated by an anti-adhesion
layer. After patterning the double stack through dry etching, the
CP is spincoated and the top layer of parylene is physically peeled
off (Figure 1g). However, due to its manual nature, this technique
is not fully scalable, and device reproducibility is poor compared
to other techniques such as dry plasma etching.[34,35] Finally, an
issue common to any lift-off process of organic materials is the
lack of well-defined geometry after the stripping process. The un-
dercut profile of the edges of the photoresist should ensure a dis-
continuous film, which is however not the case for spincoated
CPs where “ears” are typically visible at the edges of the patterns.

3.2. Dry Plasma Etching

Dry plasma etching process relies on the patterning of a photore-
sist on top of the CP layer and acts as a protective mask during
the plasma etching step (Figure 1h). The residual photoresist is
then stripped away at the end of the process. Protective interlay-
ers have been used on top of the organic layer to protect it from
incompatible photoresists. Silver or copper has been used on top
of PEDOT:PSS and acts as an etch mask during the plasma etch-
ing of the organic material.[36,37] Commercially available photore-
sists have also been directly patterned on top of PEDOT:PSS.[35,38]

The critical step for this fabrication is the overnight soaking in de-
ionized water of the CP to remove the top PSS layer that would
normally interferes with the photoacid chemistry of the resist.
Finally, orthogonal photoresists based on fluorinated monomers
have been developed to fabricate sub-micrometer patterns and
represent one of the main leap for the miniaturization of organic
devices.[39]

3.3. Photopatterning

Direct patterning of organic materials using UV light is a fast and
chemically friendly technique where substantial breakthroughs
have been achieved in recent years. Direct photopatterning relies
either on the entrapment of the organic material in an interpen-

etrating polymer network, or on the direct cross-linking of adja-
cent polymer chains through azide chemistry (Figure 1i).

The main principle behind the entrapping of CP using
UV light is the mixing of the organic material with a pho-
tocrosslinkable monomer and a photoinitiator. Upon exposure,
the monomer cross-links and traps the CP, acting as a negative
photoresist. Radical polymerization[40–42] or cycloaddition[27] have
been used to create these interpenetrating networks and showed
excellent CP characteristics, sometimes surpassing their pristine
counterparts. Moreover, these networks can enhance the chemi-
cal resistance of the organic materials[40] as well as improve the
stretchability of the polymer film.[41,42]

Polymer chains of the organic material can also be directly
cross-linked using well-suited photoinitatiors based on azide.[43]

The decomposition of azides upon UV exposure generates sin-
glet nitrenes, which can react with C-H and N-H bonds, yielding
a cross-linked matrix of the CP. This technique is universal for
materials comprising the reaction groups and has been used for
semiconductors[41,43,44] as well as dielectrics.[44,45]

3.4. Printing

Another advantage of organic semiconductors is the possibil-
ity of printing using large-scale fabrication techniques such as
screen or inkjet printing[46,47] (Figure 1j). It gives the opportunity
to manufacture low-cost devices using roll-to-roll methods with
high flexibility in terms of substrate choice, and without the need
of expensive photomasks or lithography equipment.[48] The main
challenges rely in the composition of the inks to achieve good film
homogeneity without compromising the printing process.[46]

3.5. In Situ Polymerization

A specific trait of organic polymers is their ability to be polymer-
ized in situ.[49] Indeed, electrochemical oxidation of monomers
can be triggered by applying a voltage across electrodes and al-
lows a fast and localized patterning of CPs.[50] Evolvable and dy-
namic organic circuitry can therefore be fabricated thanks to the
high spatial and temporal control of this technique.[25,51] Exter-
nal DC voltage can create a complete coverage between electrode,
whereas an AC signal generates dendritic growth,[52,53] opening
the possibility for complex architecture and computing.[54] More-
over, the polymerization can be triggered by metabolites and
electrode formation has been shown in zebra fish and leech,[55]

paving the way to in vivo electronic fabrication (Figure 1k).
For a long time, the difficulties in patterning organic materi-

als yielded poor scalability and reproducibility in polymer devices.
In recent years however, the development of orthogonal photore-
sists and direct photopatterning have partially answered these
challenges and should be the main focus for future research on
high-resolution organic circuitry (Table 1). On the other hand,
though the printing processes sacrifice resolution (which is not
a necessity for certain applications), it allows for the large-scale
fabrication of low-cost devices.

4. Bioelectronics

Biological systems typically rely on ions and molecules to com-
municate and process information. Action potentials, one of the
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Table 1. Comparison of different fabrication techniques for organic materials.

Process
complexity Resolution

Scalability Cost

Conventional lift-off High High High High

Lift-off Peel-off High High Low High

Dry etching Low High High High

Interpenetrating
network

Moderate High High High

Photopatterning Azide assisted Low High High High

in situ polymerization High High High Moderate

Printing Moderate Low High Low

most basic form of communication between neurons, are gen-
erated through the opening and closing of ion channels. The
action potentials propagate along the axon before reaching the
synapse, where an influx of calcium ions triggers the release
of neurotransmitter, carrying information to the next cell. Con-
versely, the vast majority of human-made technologies employ
electronic charges as carriers. Thus, interfacing biological sys-
tems requires a translating agent capable of conducting both elec-
trons and ions/molecules. For this specific reason, organic mixed
(semi)conductor polymers have been recognized as a highly vi-
able option thanks to their dual conductivity. Furthermore, they
offer ease of synthesis, flexibility in processing, functionalization,
biocompatibility, and softness.[13]

Sensing using biosensors or neural probes has allowed to in-
crease our understanding of biological processes, whereas neu-
romodulation has been achieved by electrical, chemical, mechan-
ical, and optical stimulation. Sensing and regulating biosystems
have been, in that sense, the cornerstones of bioelectronics plat-
forms. However, the expansion of the capabilities of these plat-
forms has sparked an interest in neuro-inspired processing func-
tions, such as synaptic plasticity and artificial spiking neuron. It
would allow the creation of seamless and adaptive biohybrid sys-
tems capable of sensing, processing, and regulating in a biologi-
cally relevant manner.

4.1. Bioelectronics and Sensing

4.1.1. Biosensors

Biological processes, such as proliferation, differentiation, or
wound healing, are intimately linked to the presence or ab-
sence of specific metabolites. Prime examples are found in stud-
ies on cancer, where perturbation of the metabolism has been
linked to malignant transformation growth, and maintenance of
tumors.[56] Detecting and measuring these metabolites is there-
fore crucial to understand these biochemical processes and mon-
itor health status. By relying on a recognition and a transducer
unit, biosensors offer a way of detecting these metabolites. The
recognition unit interacts with the analyte of interest, ideally with
a high selectivity and specificity, and produces a signal, usually
chemical, that can be transmitted to the transducer unit. There,
the input signal is transformed into a readout signal, that can be
optical, mass-related or electrical. Biosensors have been widely

used for detecting metabolites in vitro[15] as well as in vivo[16] and
are anticipated to be a major player in the market of closed-loop
continuous and wearable technologies that aim at personalized
and local control.[57]

The main part that interacts with the analytes is the recogni-
tion unit, which can be separated in five categories: enzymes,
antibodies, aptamers, riboswitches, and molecularly imprinted
polymers.[16] Enzymes are proteins that can catalyze a reaction
and convert the analyte (also called substrate or ligand) into a
product. The most common ones are oxidoreductases that use
a redox reaction to regenerate themselves after interacting with
the the substrate. This reaction generates electroactive species
that can be used by the transducer unit. Enzymes offer good se-
lectivity, but are sensitive to environmental conditions, such as
temperature or pH, and are generally expensive. Antibodies are
proteins used by our body in response to foreign agent and can
recognize antigens. The antigen-binding domain of the Y-shaped
molecule is typically located on the arms and the binding event
can be transduced through changes in electrochemical, piezo-
electric, or amperometric signal.[58] Antibodies are nonetheless
very sensitive, expensive, and suffer from batch-to-batch variabil-
ity. Aptamers are artificial sequences of RNA or single-stranded
DNA that have the ability to bind to a target and are quite similar
to antibodies in that sense. The readout can be fluorescence, elec-
trical, or mass-sensitive[59] and thanks to their synthetic nature,
aptamers offer a much stabler, and cheaper solution compared to
antibodies. Riboswitches are segments of messenger RNA and
are made out of two components: an aptamer that can selec-
tivitely detect the target and an expression platform that trans-
lates the binding of the target into a gene expression. The read-
out sensor therefore needs to detect the level of expression of
this gene, which makes it challenging to use in a complex sys-
tem, as this level can be influenced by environmental conditions.
Finally, molecularly imprinted polymers are synthetic functional
monomoners that are polymerized with a template molecule.
This template molecule represents the analyte of interest and is
removed after polymerization, yielding a matrix with recognition
cavities. This recognition unit works in a similar manner to anti-
bodies and antigens, while being more affordable. However, the
complexity lies in finding the right monomer for the templat-
ing step.

After recognition of the target, the signal needs to be trans-
duced, and the interface between the two units is crucial in order
to achieve good sensitivity. The transduction can be optical, mass-

Adv. Funct. Mater. 2024, 34, 2307729 2307729 (6 of 30) © 2023 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
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Figure 3. Overview of the different aspects of bioelectronics using organic (semi-)conductors. Sensing (first column) can be used to detect metabolites
in vitro or in vivo. a) Electrodes can be functionalized with recognition units and coupled with reference and counter electrodes. b) More complex
architectures such as the EGOFET or OECT can be used to increase the sensitivity and signal-to-noise ratio. Either the gate or the channel of the
transistor can be functionalized. The electrical activity of neuronal cells can also be recorded using either c) polymer-coated electrodes or d) transistor
array to increase density, signal-to-noise ratio, and allow multiplexing. Another aspect of bioelectronics is the regulation of the biosystem (second
column). e) The doping state of the organic material can control attachment, metabolism, and function of cells. f) 3D scaffolds can also be fabricated
using conductive polymers, paving the way for biorealistic tissue structure capable of electrical stimulation. g) Thanks to their inherent dual conductivity,
ions pumps have been realized with conductive polymers allowing for precise drug or metabolite delivery. h) Advanced circuitry, such as ion diodes,
have been fabricated as well and allow fast and addressable release sites. In the prospect of creating a seamless connection with biology, neuro-inspired
bioelectronics play an important role (third column). i) Synapses are the first element to process biosignals and their artificial counterparts needs to
possess the same synaptic plasticity, such as short/long-term potentiation and depression. j) Artificial neurons, on the other hand, allow to encode
information in a spike-based matter for a better coupling with the nervous system.

related, or electrical. Organic materials such as graphene,[60] car-
bon nanotubes,[61] or conductive polymers[62] have been exten-
sively studied as transducers thanks to their high level of func-
tionalization through covalent or non-covalent techniques, their
large surface area, and their good electrical properties.[16,62] This
section will mainly focus on transducers using CPs with an elec-
trical readout as they present additional benefits, such as soft-
ness, ion/electron (or mixed) conductivity, ease of fabrication,
and relatively low cost.[16]

The electrical signal created by the transducer unit upon recog-
nition of the analyte can be drastically different from one sensor
to the others. The sensing can be based on a change of current
(amperometric), change of potential (potentiometric), or change
of conductivity (conductometric). This distinction is sometimes
not obvious depending on the type of sensors and measurement
conditions. Three different architectures of sensors are therefore
presented below with their sensing mechanism.

The most simple type of architecture is a CP-coated electrode.
This electrode can work in a potentiometric mode where changes
in ionic concentration lead to a potential shift between the refer-
ence and the working electrodes (Figure 3a). The working elec-

trode can be functionalized with molecularly imprinted polymers
and either capture bi-product ions, or create a charged species
when capturing the analyte, but the response of the sensor is slow
and diffusion limited.[16] The electrode architecture also works in
an amperometric mode where an electroactive species undergo
oxidation or reduction. A voltage between the reference and work-
ing electrodes is applied to trigger the reaction, and the redox
current is measured. The working electrode can be occasionally
functionalized with recognition units coupled with redox media-
tors to generate electroactive species that are more easily oxidiz-
able. High selectivity using amperometric measurement is diffi-
cult as redox reactions involving other electroactive analytes can
be activated, and toxic byproducts may also be produced. Finally,
this sensor architecture can work in an impedimetric detection,
where the impedance of the whole system is measured using an
AC signal at different frequencies. The change in impedance, due
to the presence of the analyte, is then fitted to an adequate equiv-
alent circuit, which is one of the main challenges when using
this technique.

The second type of architecture is the EGOFET. This type of
device works in a potentiometric mode in biosensors and the

Adv. Funct. Mater. 2024, 34, 2307729 2307729 (7 of 30) © 2023 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
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recognition unit can either be placed at the gate level, or at the
channel level (Figure 3b). During the detection of an analyte, the
effective gate voltage applied on the channel is affected, induc-
ing a modulation of the channel current. This detection must
be made under equilibrium conditions, meaning a null gate cur-
rent. It has been shown that EGOFETs work solely via capacitive-
coupling and that the gate current is negligible at all times.[63]

EGOFETs also show a much higher sensitivity compared to tradi-
tional potentiometric sensors,[63] illustrating the potential of am-
plification through the transistor architecture.

The last type of architecture is the OECT¨ˆˆ. These transis-
tors are similar to the EGOFETs and can be used in potentio-
metric measurement, as long as they follow the zero gate current
condition. However, this architecture has mainly been used in
an amperometric mode, usually relying on oxidoreductases.[64]

But the amplification of this mechanism has been challenged
by recent papers.[63,65–67] Indeed, experimental results show that
the relative current change upon sensing is of the same mag-
nitude for the gate current as for the drain current,[63] mean-
ing that the faradaic current created at the gate is not ampli-
fied. Using an OECT architecture, however, shows an improve-
ment in terms of signal-to-noise ratio.[68] To overcome the ampli-
fication issue, a new architecture called reaction cell OECT has
been developed.[65] In this architecture, a potentiometric mea-
surement is performed in a reaction cell. The potential change
between the reference and working electrodes is then applied at
the gate voltage of a physically separated OECT, which amplifies
the signal. Another conceptual architecture has been suggested
where a current amplifying transistor, such as a bipolar junction
transistor, could amplify a faradaic current.[63]

All of these architectures can be used for detection of biomark-
ers in different settings. Point-of-care devices rely on taking
and analyzing samples on-site, while wearables bypass the sam-
pling step and directly interface the body surface. Finally, in vivo
biosensors are implanted inside the biological environment for
the detection of metabolites. The examples below are focused on
sensor based on conductive polymers with an emphasis on ap-
plications that directly interface real biological samples. A more
complete overview of carbon-based biosensors can be found in
the following reviews.[15,16]

Conventional analysis of metabolites relies on collecting a
sample from a patient, such as blood, saliva, or urine, and an-
alyzing it in a laboratory. Point-of-care devices aim at creating a
miniaturized laboratory to perform the analysis on-site. Glucose
and lactate sensors are for instance implemented in a dual chan-
nel microfluidic chip.[69] Oxidases are immobilized at the gate
of the OECT and upon addition of the metabolites, oxidation of
the byproduct hydrogen peroxide (H2O2) results in a decrease of
the drain current of the PEDOT:PSS channel. The glucose sensor
is also integrated into a portable readout system for saliva anal-
ysis, showcasing the ease-of-use, portability, and small amount
of reagent needed of the whole system. Similarly, a microfluidic
channel containing glucose, lactate, and cholesterol sensors is
presented for multianalyte saliva testing.[70] As the array of en-
zymatic OECTs operated in a common electrolyte, the chemical
cross-talk linked to the diffusion of H2O2 has to be managed.
By creating a microenvironment containing the enzyme and an
electron mediator (ferrocene), the redox reaction is spatially con-
strained to the gate electrode of each PEDOT:PSS channel. This

technique shows good results in terms of selectivity, even when
working in a common electrolyte and relying on three different
types of enzymatic reaction. Showcasing the low-cost and eco-
friendly aspects of conductive polymers, a fully inkjet-printed
and disposable sensor is fabricated on paper for daily monitor-
ing of glucose in saliva.[71] Functionalization of the working elec-
trode is performed by the printing of an aqueous solution con-
taining glucose oxidase and a ferrocene complex. Additionally, a
biosensor based on PEDOT modified carbon fiber is used for glu-
cose detection by immobilizing glucose oxidase on the working
electrode.[72] The electrode shows long-term stability and could
be a viable option for blood glucose test strip. The n-type copoly-
mer P-90 has also been used and relies on the interaction with
the enzyme itself for the detection of analytes and not the H2O2
byproduct.[68] An OECT integrated in a microfluidic channel for
detection of glucose shows an increase in the signal-to-noise ra-
tio thanks to the transistor architecture. Although the majority
of OECT biosensors are based on an enzymatic detection of the
analyte, other recognition unit, such as aptamers, can be used
to increase the selectivity. A novel gate electrode based on ap-
tamers, gold nanoparticles, and graphene is used for detection of
thrombin and could contribute to the development of cheap and
easy-to-handle point-of-care diagnostics.[73] In [74], the authors
develop an aptamer-based OECT for detection of tobramycin and
present a “pulsed gate potential” to increase the drain current
modulation. Moreover, OECTs can be fabricated on more uncon-
ventional substrate, such as fibers.[75] The sensor is integrated in
a diaper and used for detection of glucose in artificial urine. An
increasing amount of research has also focused on more complex
circuitry for metabolite sensing.[76] For example, a complemen-
tary OECT circuit is developed for ion detection.[77] The circuitry
relies on a push-pull amplifier configuration using PEDOT:PSS
and BBL OECTs in series. Through the change of ion concen-
tration of the electrolyte, a shift in the threshold voltage of the
transistor is observed. A multiscale approach is taken in order to
measure small variations of the base level over a large range of
concentration without losing performances. Despite OECTs be-
ing predominant in the field of biosensors, EGOFETs have also
been intensely investigated for metabolites detection. A label-free
immunosensor based on P3HT has been used for detection of
procalcitonin, an important sepsis marker, by immobilizing an-
tibodies on the surface of the conductive polymer.[78] A similar
EGOFET sensor is developed for detection of C-reactive protein
in saliva and shows the prospect of using such technology for
point-of-care devices.[79] The authors in ref. [80] perfectly demon-
strate this aspect by developing a self-powered platform using
glucose fuel cell for the detection of HIV-1. A P3HT EGOFET is
used with a fixed drain and gate voltage to allow an output read-
out measurable with a handheld voltmeter.

However, point-of-care technologies have limitations when it
comes to continuously measuring analytes as they require ac-
tive sampling from the patient, and recent research has focused
on devices that interface directly with the body to allow an un-
interrupted flow of information. Integration of organic materi-
als in wearables are of great interest for such sensors thanks
to their softness and lightweight. For example, a PEDOT:PSS
OECT fabricated on a cotton fiber can monitor adrenaline in
sweat.[81] The use of a platinum gate enables the indepen-
dent detection of adrenaline oxidation, regardless of the saline
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content, which is measured by another OECT featuring a silver
gate. Similarly, a PEDOT:PSS OECT for sweat sensing is fabri-
cated using screenprinting on textile.[82] Electroactive metabo-
lites such as adrenaline, dopamine, and ascorbic acid are de-
tected and the sensors show robustness even after multiple hand-
washing. In ref. [83], the authors implement another type of
sweat sensors to measure cortisol, a metabolite linked to stress
level. A molecularly selective membrane is fabricated to create
an ion-permeable layer, and is placed between the PEDOT:PSS
channel and Ag/AgCl gate. In the absence of cortisol, doping,
and dedoping of the channel can occur through the movement
of the ions. However, the presence of the metabolite seals and
blocks the molecularly selective membrane, reducing drain cur-
rent. The device is integrated into a wearable patch and used
for human sweat measurements. Additionally, a molecularly im-
printed polymer based OECT monitors the cortisol level in sweat
by using a Prussian blue redox probe embedded in a polypyrrole
polymer.[84] Similarly, the presence of cortisol blocks the electron
transfer pathway needed for Prussian blue oxidation, leading to a
decrease in the recorded current. The platform allows detection
of the analyte by a simple press of the fingertip, and without any
external stress-inducing activity. Likewise, Prussian blue is em-
bedded in a PEDOT:PSS film with oxidase for glucose sensing
and uses reverse iontophoresis to extract metabolite from the in-
terstitial fluid from the skin.[85]

A more intrinsic approach for precise detection of metabolite
is to integrate sensors in vivo. Neurotransmitters, the metabo-
lites responsible for the communication between neuronal cells,
are of particular interest to reveal interconnected regions of the
brain. For instance, an OECT array consists of a PEDOT:PSS
channel and platinum gate for in vivo oxidation and detection
of dopamine in rat brain.[86] The miniaturization of the devices
allows the simultaneous recording of dopamine release inside
and outside the nucleus accumbens structure while stimulat-
ing from the ventral tegmental area (Figure 4a). Lower work-
ing voltage and higher signal-to-noise ratio compared to other
measurement techniques are possible thanks to the OECT archi-
tecture. Pushing the miniaturization even further, organic tran-
sistors have been fabricated at the nano-scale. A nanopore ex-
tended field-effect transistor, created at the top of a nanopipette
and gated by a PPy gate, monitors DNA and protein with vari-
ous artificial receptors similarly to an ionic channel.[87] Similarly,
a PEDOT:PSS OECT is fabricated on nanopipette tips by using
a double barrel capillary for the channel and a single barrel for
the gate.[88] With such spatial resolution, the transistor can be
a potential candidate for single-cell measurement of dopamine
release. in vivo applications are however not limited to neuronal-
related analytes.[89] For instance, researchers use an OECT based
on enzymatic sensing for detection of glucose and sucrose in the
xylem vascular tissue of hybrid aspen trees.[90] In-line monitor-
ing in cell culture environment has also seen many benefits of
using OECTs. Among others, a PEDOT:PSS OECT is used for
measuring H2O2 in a Transwell support.[91] Upon stimulation by
injection of a peptide, the hydrogen peroxide produced by the ad-
herent cells is oxidized by the gate, allowing a live and continuous
monitoring of the metabolite during cell culture. Moreover, gly-
can quantitation on cell surface is performed by covalently bond-
ing cells to the gate electrode of an OECT and by measuring the
catalysis of H2O2 produced by horseradish peroxidase.[92] Contin-

uous in-line sensing and monitoring of cells are essential for in
vitro drug testing, and organic electronics have become increas-
ingly popular in this research.[93] Recently, OECT are utilized not
only to measure metabolite, but also to monitor cellular barri-
ers using a current-driven[94] or dynamic-mode current-driven[95]

approach to enhance sensitivity. Tight junction opening can be
monitored through the addition of a drug and demonstrate the
potential of such sensors for real-time measurement.

Biosensors based on conductive polymers have a great poten-
tial for metabolite detection thanks to their biocompatbility, func-
tionalization capacity, ease of fabrication, and low working volt-
age. Ranging from point-of-care to in vivo sensors, organic elec-
trochemical transistors have been the main player in the field,
and more complex and advanced circuitry has been recently ex-
plored to further enhance CPs capabilities. Although the research
is still in its early phase of development, these devices are the
building blocks for the next generation of closed-loop bioelec-
tronic system that will allow sensing, computing, and interfacing
in situ. However, there are critical challenges that must be ad-
dressed. Long-term stability of devices and device-to-device vari-
ability are a well-known Achilles’ heel of conductive polymers,
but have often been overlooked and need to be addressed by the
community. Finally, to achieve systematic improvement and pos-
sible industrial applications, standardization in terms of mate-
rial, fabrication, circuitry, and characterization is required. De-
spite the call for standardization made years ago,[13] additional
efforts are required to provide organic biosensors a genuine op-
portunity.

4.1.2. Neural Probes

Through an immensely intricate network of neuronal cells, the
central nervous system (CNS) receives sensory information, pro-
cesses it and decides of the course of action in a matter of mil-
liseconds. Capturing the communication between these cells has
therefore been crucial to understand and map functions of the
brain, and is a necessity to treat neurodegenerative and psychi-
atric conditions.[13] Neuronal signaling can be recorded by elec-
trodes that detect the disruption of the extracellular electric field
caused by ion flux during the generation and propagation of ac-
tion potentials. State of the art probes, such as the Michigan or
Utah array, are made out of micromachined silicon and paved
the way to groundbreaking discoveries.[100] However, they suffer
from major intrinsic drawbacks, such as their rigidity. The high
mechanical mismatch between the soft tissue and stiff implant
triggers a neuroinflammatory response of the body, leading to
neuronal loss and scar formation around the foreign body.[101]

The next generation of neural probe aims at reducing this me-
chanical mismatch by using softer materials like polymers, elas-
tomers, and hydrogels, or more compliant geometries like ser-
pentine, mesh, and ultrathin devices.[102] They also attempt to
lower the impedance of the recording sites by using porous or
nanostructured material[103] in order to increase spatial resolu-
tion without compromising signal-to-noise ratio, and to reduce
the required voltage during electrical stimulation.

Conducting polymers have emerged as a prime candidate for
electrode coating, thanks to their intrinsic ionic conductivity,
yielding a high surface area and low impedance[13] (Figure 3c).

Adv. Funct. Mater. 2024, 34, 2307729 2307729 (9 of 30) © 2023 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH

 16163028, 2024, 15, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adfm

.202307729 by M
PI 355 Polym

er R
esearch, W

iley O
nline L

ibrary on [08/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.afm-journal.de


www.advancedsciencenews.com www.afm-journal.de

Figure 4. Examples of bioelectronics using conductive polymers. a) An OECT array is used to highlight different dopaminergic pathways in vivo. Re-
produced under the terms of a CC BY 4.0 license.[86] Copyright 2020, The Authors, published by eLife. b) A flexible multi-electrode array combining
OFETs as an active matrix and OECTs for electrophysiological recordings is developed using a low temperature fabrication process. Reproduced with
permission.[96] Copyright 2016, WILEY-VCH. c) Different electrical stimulation protocols are compared for neuronal differentiation of neural stem cells
using various cross-linkers for the conductive polymer. Reproduced under the terms of the CC BY 4.0 license.[97] Copyright 2021, The Authors, published
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Moreover, their biocompatiblity and softness is hypothesized to
help reducing the inflammatory response from the body. Fur-
thermore, CPs can be functionalized with biomolecules, pro-
tein, or drugs to enhance tissue integration around the implant
and lower the foreign body reaction,[104,105] Although concerns
have been raised regarding the stability of CPs for long term
recordings,[106] the incorporation of cross-linkers in PEDOT:PSS
coating shows improved stability in cell culture environment.[107]

NeuroGrid is one of the first flexible probes based on PEDOT:PSS
to record local field potentials and action potentials from the sur-
face of the cortex thanks to its high conformability, enhanced
signal transduction, and high density, highlighting the benefits
of using conductive polymers.[108] To further showcase the capa-
bilities of CPs, a fully stretchable array based on PEDOT:PSS is
used for electrophysiological recordings, showing superior per-
formances compared to rigid and flexible counterparts.[42]

As a means to further increase signal-to-noise ratio and den-
sity of recording sites, pre-amplification in situ and multiplex-
ing are necessary.[109] These two aspects are for example used
to create high-density silicon probes, where 384 recording chan-
nels out of 960 can be addressed at the same time.[110] For
organic arrays, pre-amplification is predominately done using
OECTs, as OFETs usually require high(er) voltage to operate.
By using OECTs as voltage-controlled current-source amplifier,
the signal of PEDOT:PSS devices can be amplified directly at
the recording site and shows higher signal-to-noise ratio com-
pared to PEDOT:PSS coated electrodes.[111] Additionally, multi-
plexing using OECTs is achieved by wiring the drain terminals
together, and using them as scan lines[112,113] (Figure 3d). As this
architecture can potentially increase crosstalk and energy con-
sumption, having an access transistor for each recording site is
preferable.[114] The authors in ref. [96] therefore use a fully or-
ganic circuit consisting of OFETs as access devices and OECTs
as the pre-amplification circuit for high temporal electrophysi-
ological recordings (Figure 4b). However, one of the drawback
of OECTs is the well-known trade-off between high amplifica-
tion and high speed, parameters that are both crucial for neu-
ronal recording. To address this issue, new OECT architectures
are proposed, namely the vertical OECT[115] or the internal ion-
gated OECT,[116,117] which show an increase in cut-off frequency
without sacrificing amplification.

The recording of neuronal signals has undoubtedly been the
cornerstone for unraveling the first secrets of the nervous sys-
tem. However, many challenges still remain especially concern-
ing the inflammatory response and probe failure, which hinder
long-term recordings.[101] The reasons behind these issues are ex-
tremely complex and different approaches have been explored to
solve them, such as material or geometrical optimization. How-
ever, a more multidisciplinary approach with optimization across
multiple parameters is necessary to understand the underlying
causes.[118] Conductive polymers are hypothesized to be a good

candidate owing to their ionic-electronic conductivity, softness,
and functionalizable nature. Their potential to be implemented
in transistors and multiplexed arrays makes them even more
valuable. Nonetheless, long term studies to evaluate stability and
inflammatory response are still lacking. Moreover, more efforts
in terms of standardization are needed to increase the scalabil-
ity and reproducibility of implants. Nevertheless, the perspective
of recording and stimulating the nervous system, allowing to po-
tentially bypass dysfunctional tissues or treat neurodegenerative
diseases,[100] provides an additional motivation for research in the
field of organic neural probes.

4.2. Bioelectronics and Regulation

4.2.1. Tissue Engineering

Although the regulation of growth and function of cultured cells
is typically controlled through the addition of supplements in
the culture media, the mechanochemical pathways related to
the interaction between cells and their substrate are similarly
crucial.[119] Charge density, wettability, and morphology of the
substrate have been shown, for example, to control attachment,
metabolism and function of cells.[120] Another important tool
for the modulation of growth and function is electrical stimula-
tion, which can inflect proliferation, migration, or differentiation
of cells.[121] Mechanobiology and electrical stimulation are thus
pivotal aspects to study in tissue engineering and regenerative
medicine applications.

Conducting polymers are in these aspects a unique class of
material as their intrinsic properties can be changed by apply-
ing an external potential. As the CP undergoes doping or de-
doping, ions diffuse in and out of the bulk material, changing
its properties, and therefore offering a noninvasive way to alter
the synergy between cells and substrate. Polypyrrole (PPy) pre-
coated with fibronection for example is used as substrate to con-
trol growth of aortic endothelial cells.[120] In its oxidized state,
the substrate promotes normal cell spreading and DNA syn-
thesis, whereas in its neutral state, cell rounding and inhibi-
tion of DNA synthesis is observed (Figure 3e). Similarly, a PE-
DOT:heparin film functionalized with fibroblast growth factor-2
controls the cell function of embryonic neural stem cell.[122] The
neutral state of PEDOT:PSS exhibits weaker ionic binding and
increases the bioavailability of the growth factor, promoting pro-
liferation, while the oxidized state leads to greater cell differentia-
tion. These noninvasive bioswitches are made possible thanks to
conductive polymers and are therefore valuable tools for stem cell
therapy. CPs are also used to promote vascularization through the
degradation of hyaluronic acid embedded in PPy films,[123] or to
create micropatterns as guidance cues for neurons.[124,125]

Additionally, conductive polymers offer a straightforward plat-
form for electrical stimulation. For example, the stimulation of

by MDPI. d) An organic electronic ion pump for delivery of neurotransmitters showcases high selectivity and efficiency by introducing proton traps
inside the cation exchange membrane. Reproduced under the terms of the CC BY-NC 4.0 license.[98] Copyright 2021, The Authors, some rights reserved;
exclusive licensee American Association for the Advancement of Science. e) A biohybrid synapse exhibiting short-term and long-term modulation upon
exposure to dopamine is coupled with PC-12 cells to create a neurotransmitter-mediated neuromorphic device. Reproduced with permission.[99] Copy-
right 2022, Springer Nature Limited f) An organic electrochemical spiking neuron based on complementary OECTs is used to directly interface with a
Venus Flytrap to induce lobe closure. Reproduced under the terms of a CC BY license.[18] Copyright 2022, The Authors, published by Springer Nature.
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neurons using different cross-linked PEDOT:PSS films shows an
increase of differentiation[97] (Figure 4c). Furthermore, electrical
stimuli on a PPy film increase neurite outgrowth of PC-12,[126]

which is traced back to a higher adsorption of protein during
stimulation.[127] Such enhancement is also realized by combin-
ing functionalization of a PPy film with nerve growth factor and
electrical stimulation,[128] truly showcasing the advantages of us-
ing CPs.

More recently, 3D scaffolding, a significant advancement to-
ward biorealistic tissue engineering, have been created using
conductive polymers (Figure 3f). Hydrogels are for instance used
for skin grafting and wound healing.[129] Other fabrication meth-
ods, such as freeze drying or electrospinning, are also adapted for
CPs to create highly porous scaffolds[130] and fiber networks that
enhance neuronal differentiation upon electrical stimulation.[121]

By means of doping and dedoping, conductive polymers have
the ability to noninvasively modify their properties and interact
with the mechanobiology of cells. In addition to their electrical
characteristics for stimulation and functionability, these qualities
make CPs a promising option for tissue engineering and regen-
erative medicine.[15,62,131,132]

4.2.2. Drug Delivery

Thanks to their inherent ionic and electronic conductivity, CPs
have been explored as drug delivery from an early stage. Rely-
ing either on the release of trapped molecules[133] or migration
through ion exchange membranes,[13,134] CPs enable a highly
controlled delivery of drugs at a precise location without any liq-
uid transport[135] or substance degradation, and could theoreti-
cally reach the speed of synaptic signaling.[136] Moreover, it opens
up possibilities for implantable and closed-loop systems in which
the biosensing properties of CPs could be integrated with drug
delivery mechanisms.

Originally, conductive polymers emerged as a promising can-
didate for drug delivery due to their two distinct redox states. It
is hypothesised that one of these states could be used for bind-
ing the ionic substance to the charged polymer and the other
one to release it. Glutamate is for example incorporated inside
a PPy film by oxidizing the CP, and the neurotransmitter is re-
leased afterwards by applying a negative voltage.[137] Conversely,
positively charged drugs, such as dopamine, are delivered us-
ing a co-polymer poly(N-methylpyrrole)/poly(styrene sulfonate)
electrode.[138] Similarly, a p-toluene sulfonate doped PPy film is
used for the delivery of cationic risperidone, an antipsychotic
drug.[139] This system demonstrates the advantage of having im-
plantable devices, as adherence rates to orally prescribed antipsy-
chotic drugs are generally low. Additionally, in vivo and local-
ized drug delivery can lower the systemic exposure of the drug,
which for certain drugs, like the anticoagulant heparin, can lead
to degradation when ingested orally. An example of this is a
PVA-heparin hydrogel on PPy for the controlled release of the
drug.[140]

Despite the potential of confining ions within a CP film, sev-
eral limitations exist, namely low on/off release upon stimula-
tion, low storing concentration of drugs and poor correlation
between stimulation and ions delivery.[141] The development of
the organic electronic ion pump tries to address these limita-

tions by relying on the migration of ions from a source to a
target reservoir through an electronic-insulating, ionic exchange
membrane. The CP electrodes in organic electronic ion pumps
convert an electronic current into an ionic current between the
two reservoirs. Applying a positive voltage on the source oxi-
dizes the CP and drives cations inside the ionic exchange mem-
brane, while a negative voltage on the target electrode reduces
the CP and draws the cations inside the reservoir (Figure 3g).
Cation exchange membranes have been fabricated using over-
oxidized PEDOT:PSS, a process known to break conjugation
and thus, reduce electronic conductivity.[142] Coupled with PE-
DOT:PSS electrodes, organic electronic ion pumps delivers K+

and Ca2+ to control signalling in neuronal cells.[143] They are also
used to create pH gradient and proton oscillations, a highly in-
teresting tool for lab-on-a-chip applications.[141] This technology
is then adapted for implantable devices to directly deliver neu-
rotransmitters to the auditory system of guinea pigs.[144] In re-
cent years, research in the field has led to faster organic elec-
tronic ion pumps with smaller lag times between activation and
delivery,[145] better selective delivery[98] (Figure 4d) as well as
more versatile ionic exchange membranes.[146,147] More complex
ionotronic circuit are also developed, such as diodes to improve
speed of delivery and provide addressability of individual release
sites[148] (Figure 3h). Additionally, conversion of an AC to DC
flux of ions is realized by building a four-diode bridge rectifier
circuit.[149]

The use of conductive polymers allows for the creation of fast
and highly controlled drug delivery systems. As the technology
relies solely on ions movement, issues linked to liquid micro-
injection such as increased pressure, chemical gradient disrup-
tion, or convection are entirely circumvented. Furthermore, im-
plantable devices with addressable release sites are available
thanks to advanced circuit architectures and standard microfab-
rication processes. This places organic electronic ion pump and
its derivatives at the forefront of next-generation implants ca-
pable of influencing their bioenvironment through chemical
release.

4.3. Neuro-Inspired Bioelectronics

Creating adaptive closed-loop systems such as brain-machine in-
terfaces, implants, or prostheses requires the implementation of
hardware-based devices capable of sensing biological activity, pro-
cess these events, and control the biosystem. The processing ca-
pabilities are critical for enabling a seamless feedback on the or-
ganism and should be inspired by their biological counterparts.
In that sense, neuro-inspired devices, such as artificial synapses,
neurons, or nerves, emulate neuronal processing in an attempt
to create more coherent biohybrid interfaces. Owing to their di-
rect interaction with aqueous electrolytes, organic semiconduc-
tors have been implemented as devices capable of bioinspired
computation[17,150] (Figure 3i). This section will focus on appli-
cations where neuro-inspired organic electronics are directly in-
terfacing biological entities to create biohybrid systems.

In the neuronal system, synaptic connections serve as the pri-
mary means of communication between neurons. Thanks to
their dynamic nature and continuous evolution in response to
neural activity such as neurotransmitter releases, synapses are
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Figure 5. Analogies between biological systems and artificial systems including schematic representations. a) A biological neuron receives a stimuli and
forwards it to the synapse. b) A schematic representation shows a neuron as a node and synapses as arrows. c) The organic EC-RAM functions as artificial
synapse. d) Receptors for example in the human skin transfer different stimuli (touch and heat) via the neurons and synapses. e) One neuron is able to
handle multiple inputs. f) The gate of one EC-RAM can also be connected to different sensor types. g) Biological neurons form connections with each
other via synapses to transfer information from one place to another. These connections are adaptable and perform learning on a local level. h) Synaptic
connections can strengthen or weaken over time which means they can locally amplify (excitation connection) or dampen (inhibitory connection) the
initial signal. i) The EC-RAM is also able to adapt with incoming signals performing local learning in hardware. j) Big cluster of neurons form biological
neural networks capable of performing complex tasks, the most impressive one being the human brain. Artificial counterparts can be distinguished
between two type of networks: k) A network of nodes connected by random connections is called reservoir. l) Trough electropolymerization, branch-like
organic polymer structures can be grown to create a random network. m) The second type is an artificial neural network that has structured, directed
connections of different strengths between nodes connecting an input and output layer. n) Similarly, crossbar arrays can be used to handle vector-like
inputs and process them via EC-RAM structures to an output line.

the first element to process biosignals.[151] This synaptic plastic-
ity can be artificially reproduced by using a PEDOT:PSS OECT as
a postsynaptic element.[99] Gate pulses induce short-term mod-
ulation by injection of ions in the channel, while long-term
modulation is achieved thanks to the oxidation of dopamine
present in the electrolyte. Neuron-like PC-12 cells are seeded
with the artificial synapses, and exocytosis and endocytosis of
dopamine are emulated by the addition of a microfluidic system
(Figure 4e). Similarly, unidirectional synaptic coupling between
live neurons is created by linking them with an organic memris-
tive devices.[152] Action potentials are then evoked in one of the
cells via patch-clamp stimulation, and gradually reduce the resis-
tance of the memristive device, until eventually evoking a spiking

activity in the second cell. Although the artificial synaptic connec-
tion shows more an off-to-on behavior rather than plasticity, this
study provides evidence of unidirectional event-based coupling
of live neurons.

Another essential element for neuro-inspired devices is the
ability to encode information in a spike-based manner, to closely
mimic biological processing and communication. Recently, or-
ganic oscillatory electronics have been used to create artificial
spiking neurons (Figure 3j). An organic artificial neuron based
on a S-shaped negative differential resistance shows spiking be-
havior modulated by ionic concentration.[19] Similarly to biolog-
ical neurons, the organic artificial neuron displays spike latency
and integration behavior. The firing frequency of the device ex-

Adv. Funct. Mater. 2024, 34, 2307729 2307729 (13 of 30) © 2023 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH

 16163028, 2024, 15, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adfm

.202307729 by M
PI 355 Polym

er R
esearch, W

iley O
nline L

ibrary on [08/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.afm-journal.de


www.advancedsciencenews.com www.afm-journal.de

hibits sensitivity to ionic concentration and is therefore used to
process the integrity of a biomembrane, showcasing the biohy-
brid nature of the artificial neuron. Another organic spiking neu-
ron mediated by ionic species and based on a Axon-Hillock circuit
is used to modulate the opening and closing of a Venus flytrap by
changing the frequency of the electrical stimulus[18] (Figure 4f).
In an effort to bring modulation to the stimulation, an artificial
synapse based on electropolymerization of ETE-PC is introduced
and shows paired pulse facilitation and depression as well as
long-term potentiation and depression. Combining the artificial
neuron and synapse allows to show spike-timing-dependent plas-
ticity, where the synaptic strength significantly increases when
the pre- and post-synaptic inputs arrive in sync, consequently in-
creasing the firing frequency. However, firing of the postsynpatic
input before the presynaptic one also induces increase of the
synpatic weight.[151] Nonetheless, these examples demonstrate
the necessity of establishing systems based on spiking to ensure
seamless interaction with biology.

In our body, the somatosensory system allows the transmis-
sion of sensory information, such as touch, proprioception, tem-
perature, or pain, between the peripheral receptors and the cen-
tral nervous system.[151] Afferent nerve fibers are responsible for
relaying signal from the sensory systems to the CNS and the cre-
ation of an artificial counterpart has naturally been explored. A
fully organic artificial afferent nerve consists of a pressure sensor,
a ring oscillator and a synaptic transistor.[7] The pressure is en-
coded in the frequency of the ring oscillator, which in turn modu-
lates the postsynaptic current of the transistor. The combination
of a cluster of pressure sensors to one ring oscillator allows the
identification of braille characters thanks to the integrative nature
of the synaptic device. The artificial afferent nerve is also con-
nected to efferent nerves of a cockroach and emulates a reflex arc
through pressure on the sensors. In an attempt to close the sig-
nal loop, an artificial efferent nerve, which conveys information
from the CNS to the peripheral nervous system, is presented.[153]

The input of an artificial synaptic transistor is modulated by a
strain sensor mimicking proprioception, a natural feedback loop
in the body that allows the sense of self-movement. In the ab-
sence of proprioception, degradation of the locomotion, and dam-
age on the muscle are observed, and is therefore crucial to imple-
ment this aspect in artificial nerves. The neuromorphic efferent
nerve enables bipedal walking locomotion in a paralyzed mouse,
and its neurorehabilitation ability is demonstrated by using elec-
tropyhsiological signals to stimulate the flexor and extensor of a
leg.

Organic neuro-inspired architectures will likely be a require-
ment for in situ closed-loop system and will help reducing the
circuit’s complexity while providing a more biologically relevant
output. Artificial synapses will bring the adaptivity and learn-
ing thanks to their plasticity, whereas artificial neurons will in-
troduce the spiking-behavior characteristic of the nervous sys-
tem. While proof of concepts have already shown the full inte-
gration of artificial nerves capable of bypassing an injured tis-
sue and producing natural locomotion movement, creating arti-
ficial biorealistic circuitry requires the involvement of biologists
and neuroscientists in the early stages of conception. Moreover,
more intense processing features will require fabrication upscal-
ing. These points should be the main focus of future research on
neuro-inspired bioelectronics.

5. Bio-Inspired Adaptive Sensing and Processing

Since the dawn of computing researchers have been trying to un-
derstand and replicate the immense skillset and power of the hu-
man brain and body. The breakthroughs in AI of the past decade
have led to massive strides in handling complex tasks such as
image classification and language processing and underline the
huge potential of artificial bio-inspired systems.[2] Nevertheless,
the efficiency and capability of biological systems remains un-
matched by far.[1]

Conventional processing and control systems operate funda-
mentally differently from biological control systems. They are
based on binary computations in a top-down architecture, while
in nature information is conveyed via frequency-regulated ion
transfer in locally connected structures. With recent advances in
organic electronics, neuro-mimetic behaviors such as synaptic
plasticity and spike-dependent behaviors have successfully been
implemented in organic mixed ionic-electronic conductors[5,6,17]

(Figure 6a).
Bio-inspired organic devices could potentially be the

missing link between the ion-based, soft systems of na-
ture and highly controllable and programmable computing
systems.

Here, we analyze the recent efforts to move from biosensing
and biohybrid organic devices to fully artificial organo-electronic
nerve systems and brain-inspired computing.

To get a better understanding on how to replicate the powerful
performance of the brain, we first look into the properties that
makes it so unique.

The human nervous system is divided into two parts: the
CNS that includes the brain and spinal cord and the periph-
eral nervous system (PNS). The peripheral nervous system con-
nects all parts of the body to the central nervous systems and
vice versa. Voluntary actions and body movement (such as mus-
cle contractions) are controlled by the somatic or sensory ner-
vous system of the PNS. Efferent nerves (coming from the
CNS) transmit commands to the motor nerves that lead to mus-
cle contractions and movement. Afferent nerves (leading to the
CNS) relay information from the sensory neurons and their
receptors.[154]

The CNS is the main computing hub of the body responsible
for more complex assessments and predictions. It also defines ab-
stract notions like intelligence, emotion, thought, memory, and
personality and controls higher functions such as creativity, rea-
soning, and problem-solving. The CNS is highly adaptable and
constantly adjusts to the current circumstances.[155] Both CNS
and PNS consist of a densely connected, tunable network of neu-
rons and synapses (Figure 5a,b,j).

5.1. Artificial Sensory Systems

Our environment provides a very rich and complex stream of in-
formation that cannot be grasped with a single type of sensor
or sensory neuron. Already Aristotle divided the human percep-
tive system into the five senses: hearing, vision, taste, smell, and
touch. Nowadays, balance and proprioception, which is the un-
derstanding of body position and self-movement, are considered
a sixth sense. Yet we also experience different sensations within
one sense, a meal can taste sweet, sour, salty, bitter, or umami.
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This concept of sensory modalities subdivides our senses de-
pending on the received stimuli, thus a distinct sensory receptor
is required to handle the respective stimuli[156] (Figure 5d,e). The
receptors can be classified in the following categories according
to the received stimuli: mechanoreceptors (hearing, touch, bal-
ance, pressure), electromagnetic receptor (light/vision, tempera-
ture), chemoreceptors (smell, taste) and nociceptor (pain). Once
a receptor is activated, it translates the characteristics of the ini-
tial stimuli, such as strength and duration into electrical impulse
patterns that are transduced via the sensory neuron and further
processed in the nervous system. Many of these receptors only
process one type of stimuli while for example nociceptive neu-
rons often integrate different stimuli into a multimodal pain/no-
pain signal.[157]

To handle the abundant data of our environment, our periph-
eral sensory system declutters and restructures the received in-
formation in order to prevent an overload of computations in the
central nervous system, primarily the brain. The sensory neu-
rons conduct the electrical spikes generated at the receptor via
synapses to the next neurons. The synapse plays a crucial role in
conveying the information as it adapts the forwarded signal in
regards to features of the incoming signal (strength, frequency)
and prior experience (Figure 2a). It accounts for momentary vari-
ations (short-term plasticity) as well as changes over hours, days
or months (long-term plasticity) (Figure 2c–g). That way, instead
of forwarding every stimuli to the brain as a singular piece of in-
formation to process, the synapses already filter the data accord-
ing to relevancy.[158]

In general, the synaptic activity is based on the stochastic
process of releasing neurotransmitter into the synaptic cleft
that causes a current between pre- and postsynaptic neuron.
A higher number of incoming spikes increases the probabil-
ity of releasing (more) neurotransmitter.[159] Additionally, each
neuron is connected to thousands of other neurons forming
a dense and redundant network.[155] This creates a system of
high accuracy and incredible fault tolerance that is flexible to
new inputs and robust against stochastic disturbances such as
noise.

The sensory complex therefore operates as local sensing unit
while simultaneously providing efficient information (pre-) pro-
cessing in the periphery.

Because of this, the human body is almost effortlessly able
to manage the vastness of its environment and to adapt to un-
expected events, while most machines are still struggling with
handling big data inputs[160] or adjusting to new situations.[161]

With the recent advancements in AI, an ever growing data feed
and an increasing demand for intelligent and autonomous ap-
plications, conventional computing systems are now more and
more confronted with their limits. This is especially true for sen-
sitive, highly complex tasks that require elaborate (data) han-
dling while having limited energy and computing resources at
disposal.

In taking inspiration from biological systems, artificial sensory
systems can potentially offer more adaptivity, flexibility, robust-
ness, accuracy, and energy efficiency for sensing, processing, and
computing units. In the following, we explore the latest advance-
ments regarding bio-inspired adaptive sensing and processing,
focusing on state-of-the-art devices, and systems. An overview is
provided in Table 2.

5.1.1. Single-Synapse Systems

The sensory receptor serves as a primary gateway for environ-
mental stimuli and, along with the sensory neuron, constitutes
the initial stage in a series of data processing procedures reach-
ing up to the brain (Figure 5a,b,d,e). These receptors are cru-
cial to gain an understanding of the surrounding environment,
body position, and even personal well-being. They are essen-
tial for perception, movement control and understanding risk
assessment.[176] Receptors specialized on the detection of neu-
rotransmitter are generally found inside the synapse, but synap-
tic adaptation is an attribute that translates to receptors for other
types of stimuli as well.[177] Embedding synaptic features such as
spike-timing dependent plasticity (STDP), paired pulse facilita-
tion (PPF), or long-term plasticity into artificial sensing systems
can aid in filtering out repetitive or disorganized data. Recent
literature[176,178,179] offers comprehensive reviews on (organic)
synaptic sensing technologies. Here, we highlight specific exam-
ples to emphasize critical features of organic artificial synapses
(Figure 5c,f).

An artificial neuron containing a tactile sensor (receptor), an
ionic cable (axon) and a synaptic device (synapse) is able to dis-
tinguish between different spatiotemporal patterns.[162] The tac-
tile sensor is made from carbon nanotubes in polydimethylsilox-
ane (PDMS) forming a resistive pressure pad. It is connected
to polyvinyl alcohol based ionic cable that also operates as the
gate dielectric of the synaptic OFET. The indium tungsten ox-
ide OFET showcases spike voltage and spike duration dependent
plasticity and paired pulse facilitation. Two pressure pads that
connect to the gate dielectric are activated in different patterns.
The conductance states of the synaptic transistor are clearly dis-
tinguishable based on the applied pattern. The artificial neuron is
able to integrate and modulate spatiotemporal patterns of tactile
stimuli with two pressure sensors coupled to one synaptic device
(Figure 1e).

A different approach is taken by Qian et al.[163] Their synap-
tic OFET consists of a layer of copper-phthalocyanine deposited
onto pentacene on SiO2/Si substrate. The organic semiconductor
is known for its sensitivity toward the air pollutant NO2. Spike
voltage dependent and STPD of the device is proven. Long-term
changes of the synaptic behavior occur in the presence of NO2.
Low and high concentrations of NO2 raise the postsynaptic cur-
rent correspondingly. This process is also reversible by either ap-
plying the inverse/inhibitory gate voltage or by purging the air
chamber to remove the pollutant. Furthermore, the device is in-
tegrated into a feedback control loop with two neuron units (non-
inverting Schmitt-Triggers). The chamber can now be opened or
purged depending on the activation of the neurons. This success-
fully simulates risk-response and avoidance systems of biological
nervous systems.

While this system offers a unique realization of risk control,
the sole presence of the chemical stimulant NO2 is not enough
to evoke a response. A continuous chain of voltage pulses with
an amplitude of ⩾20V at the gate is needed to maintain func-
tionality. The event-driven computation and low voltage opera-
tion (mV) are essential traits of biological systems,[178] which
this synaptic system falls short to replicate. Nonetheless, inte-
grating a more conventional control loop (like Schmitt-Triggers)
with an organic synaptic transistor counterbalances the stability
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Table 2. Overview on organic devices used for adaptive sensing and processing tasks. Synaptic properties are noted as follows: excitatory/inhibitory
postsynaptic potential (EPSC/IPSC) to showcase both synaptic potentiation and depression, spike voltage dependent plasticity (SV), spike duration
dependent plasticity (SD), spike rate/frequency dependent plasticity (SR/SF), and paired pulse facilitation (PPF) as a two pulse example of SR/SF, short
term memory (STM), long term memory (LTM).

Refs. Type (Semi-)Conductor Gate insulator Synaptic properties Application/Sensor

[162] OFET indium tungsten oxide
(IWO)

polyvinyl alcohol (PVA) EPSC/IPSC, SV, SD, PPF pressure

[163] OFET CuPc, pentacene SiO2 PPF, SV, LTM NO2/air pollutant

[164] OFET PBDTTT-C-T P(VDF-TrFE) PPF, SV, SD, SN, LTM light and dopamine

[165] OFET ITO PVA SV, SD pressure and light

[166] solar cell P3HT, perovskite – EPSC/IPSC, PPF, SD,
SN, SF, SV

light

[167] OFET FT4-DPP:PEO ion gel EMIM:TFSI with
PS-PMMA-PS

EPSC, PPF, SV, SN, SF light, polymer actuator

[168] OFET P3HT, PDMS ion gel PPF, STM, LTM pressure, soft actuator

[169] FET ZnO EPSC/IPSC, SV, SN, SR,
LTM

pressure, electronic
skin

[11] OECT, EC-RAM p(g2T-TT) ion gel EMIM:TFSI,
PVDF-HFP

STM, LTM light/reflection, touch,
actuator

[170] ferroelectric OFET PEDOT:PSS, P3HT P(VDF-TrFE) SN, SV, LTM pressure/tactile,
electronic skin

[10] OECT, EC-RAM P-3O ion gel (EMIM:TFSI,
PVDF-HFP), NaCl

solution

LTM in-sensor computing
(simulation)

[171] OECT, EC-RAM p(g2T) organo-hydrogel with
NaCl

LTM in-sensor computing
(prototype and
simulation)

[54] OECT PEDOT: PF6 TBAPF6 SF, fading LTM reservoir computing

[172] OECT SPAN water/humidity SF, fading STM reservoir computing

[173] OFET p-NDI ionic gel PPF, SR reservoir and in-sensor
computing

[30] EC-RAM PEDOT:PSS Nafion LTM hardware neural
network (prototype
and simulation)

[174] memristor parylene – LTM hardware neural
network (prototype
and simulation)

[175] EC-RAM P3HT EMIM:TFSI LTM hardware neural
network (prototype
and simulation)

uncertainty that organic electronics still struggle with and deliv-
ers reliable and stable control systems.[180] The synaptic device
is also ideally equipped for monitoring the air pollutant as the
channel material itself functions as the receptor. The variety of
nowadays available organic (semi-)conductors provides many op-
tions for choosing a suitable channel material respective to the
application and in some cases there might be an opportunity to
custom-make a functionalized material.[181]

Lee et al. take their artificial synaptic system a step further
and combine chemical sensing and photodetection in a single
device[164] (Figure 1e,f). Their artificial synapse is based on a dual-
gated OFET architecture stacking the photoconductive polymer
semiconductor PBDTTT-C-T between two insulators, SiO2 on
the bottom and P(VDF-TrFE) at the top. The photoconductive
polymer shows ferroelectric (memory) characteristics in top gate
configuration and hysteresis-free p-type transfer for bottom gate.

Through capacitive coupling of both dielectrics in the dual-gate
approach, the changes of the surface potential are amplified with-
out the need of external amplification circuits. The top gate elec-
trode is extended and functionalized to detect the neurotransmit-
ter dopamine. A PDMS well on top of the extended top gate con-
tains the liquid analyte. The synaptic device exhibits short-term
plasticity, paired pulse facilitation, as well as long term plasticity.
Upon exposure to light or dopamine, an increase in postsynap-
tic current is detected. Simultaneous exposure with both stimuli
leads to an associative signal modulation mimicking the biolog-
ical effect of improved cognitive performance due to light expo-
sure.

Parallel processing of multiple sensory signals as demon-
strated here is required for multimodal perception and facili-
tates the handling of more complex sensations (Figure 1d,f). The
synaptic systems also performs rudimentary preprocessing in
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form of signal amplification. Using liquid analyte solutions as
an electrolyte creates novel avenues for signal processing, such as
global sensing and wetware/in-liquido computing.[182] This topic
is discussed in greater depth in Section 5.2.3.

The development of single device systems represents the first
step toward creating more complex synaptic systems. The in-
corporation of diverse types of sensory receptors (tactile, chem-
ical, photo, etc.) demonstrates the flexibility and adaptability of
organic electronics for this purpose.[162–164] They enable multi-
modal sensory fusion at the single device level with low-level
processing comparable to biological sensory neurons. However,
there is currently no clear roadmap for scaling up these single-
synapse systems into larger network-like structures. This issue
will be revisited in section 5.1.4.

5.1.2. Sensorimotor Systems

The interaction between sensing and movement is crucial in
our ability to comprehend and learn about our environment and
adapt to new settings. The environment is a complex source of
information that must be explored before determining the best
course of action[183]

The simplest form of sensorimotor interaction, known as sen-
sorimotor integration, is achieved through the reflex arc. This
direct link between sensory neurons, motor neurons, and the
spinal cord bypasses the brain as a processing unit, resulting
in faster response times and reduced computational load on
the brain. The reflex arc serves as a basic mechanism for self-
protection and risk management within our nervous system.[184]

More voluntary muscle movements regulated by the somatosen-
sory nervous system are influenced by multimodal sensory in-
puts, simultaneously these movements can alter our perception
of the surroundings (active exploration).[185] Sensorimotor adap-
tation is inherently challenging because it requires coordinating
multiple sensory inputs and memory of past experiences in real-
time to achieve a particular goal.

Despite the increasing emphasis on active exploration in
robotics, sensorimotor integration has yet to reach technological
maturity. One of the most significant issues is the meaningful
handling of sensory data.[186] The (multi-)sensory inputs need to
contain information on the stimuli strength and localization. Ide-
ally, this happens in real-time and allows for dynamic adaptions
leading to local learning effects (Figure 1g–i). By moving from
software to hardware-based systems, these characteristics can all
potentially be embodied in the organic artificial synapse and ini-
tial implementations show promising results.

A light-triggered pupil reflex is replicated in an artificial or-
ganic sensorimotor system by Gong et al.[166] An optoelectronic
synapse based on perosvkite and the organic polymer P3HT is
constructed. The synapse regulates its postsynaptic current based
on the light intensity and pulse duration. The dilation of the pupil
is simulated with Ni–Ti alloy artificial muscle fibers. Through ap-
plying exitatory or inhibitory synaptic signals, the artificial mus-
cle fibers either contract or dilate the pupil.

A different architecture of an optoelectronic synapse with sen-
sorimotor integration is shown in ref. [167]. Visible light excites
an organic photodetector, the electric signal is conveyed to a
synaptic transistor based on FT4-DPP:PEO nanowires that acti-

vates a polymer actuator. The researchers also demonstrate tem-
poral encoding of the input stimuli through short term mem-
ory. Each letter of the English alphabet in Morse codes shows a
characteristic output amplitude. Handling multiple consecutive
stimuli in a single device showcases the high accuracy and tem-
poral robustness of the system. A similar setup with a tactile and
a light stimuli is used for spatiotemporal integration.[165] Flexible
organic synapses easily integrate into a soft and moving object
without significant performance loss due to their inherent com-
pliance. Inspired by the movement of the earthworm, Shim et al.
developed a biomimetic soft robot that moves into defined direc-
tions upon tactile stimuli on the actuator.[168]

In addition to linking sensory input and motor output, the sen-
sorimotor loop is also capable of long-term adaptation through
changes in synaptic connections based on past experiences. In
an experiment involving a robot navigating a maze, the senso-
rimotor loop was able to adapt through a reward-based system
after a few unsuccessful attempts, showcasing real-time associa-
tive learning and long-term memory function[11] (Figure 6b).

Although these are only first implementations of sensorimo-
tor learning in artificial organic synapses, they exhibit many of
the missing features in current robotic research. Most robotic
systems nowadays consist of rigid structures controlled by either
complex computation-heavy learning schemes or fixed control al-
gorithms. The combination of low power devices, local learning
and soft-natured materials allow the development of autonomous
biomimetic systems on mechanical and electrical level. Upscal-
ing of these systems will show the true potential of organic elec-
tronics for active exploration.

5.1.3. Artificial Skin

Sensory and motor activities influence each other mutually
through sensorimotor integration. In broader terms this means,
the physical structure of a system shapes how it can react and
behave in a certain environment. The material properties (i.e.,
a rigid robotic finger versus soft human finger) of a system de-
fine the dynamics of each interaction with the surroundings. This
phenomenon is called embodiment.[187] The skin is our biggest
external sensory organ and an ideal example of embodiment.
It continuously provides haptic information about the environ-
ment. Human skin contains different type of sensory receptors
that are distributed all over our bodies providing the most obvi-
ous form of embodiment[156] (Figure 5d). The different sensory
modalities in the skin are helpful to get a deep understanding
of the surroundings, but they also have a second function: self-
protection. Through pain, the skin signals potentially dangerous
situation, so damage can be prevented and precautions can be
taken.[188] At the same time, the mechanical properties of the skin
such as softness and texture enhance the sensory inputs. Grasp-
ing an object is much more difficult with a stiff gripper, and slip
is easily detected through the friction ridges on the fingertips.[189]

These integrated safety features and the simplification of com-
plex sensor inputs through mechanical design are highly desired
qualities for robotics, artificial skin replacements and electronic
skin as well. For now, robotic and prosthetic designs for interac-
tion rely heavily on structured, well-defined tasks in constrained
environments that are then analyzed in software.[190]
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Figure 6. Examples of brain-inspired artificial systems. a) An artificial synapse based on PEDOT:PSS showcases synaptic plasticity. Reproduced with
permission.[5] Copyright 2017, Springer Nature. b) Multimodal sensory inputs are used for intelligent actuation of a robot in a maze via an adaptive
organic neuromorphic circuit. Reproduced under the terms of Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).[11] Copyright
2021, The Authors, published by AAAS. c) A stretchable neuromorphic ’chip’ shows highly stable computing performance and demonstrates on-chip
vector-matrix multiplication. This type of wearable devices enables local learning and in-sensor computing. Reproduced with permission.[171] Copyright
2022, Elsevier Inc. d) PEDOT:PF6 fibers construct a dendritic network that possesses short-term memory with the ability to carry out non-linear trans-
formations. Exploiting these characteristics, reservoir computing is implemented to classify biosignals such as ECG data. Reproduced under the terms
of the Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).[54] Copyright 2021, The Authors, published by AAAS. e) A 3x3 array
of organic synaptic devices is arranged in a crossbar architecture to allow for parallel programming of multiple devices. This technology is potentially
scalable to accomodate large artificial neural networks. Reproduced with permission.[30] Copyright 2019, AAAS.
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The ‘intelligent’ mechanical properties (i.e., softness or struc-
tured surfaces) are difficult to achieve in artificial system based on
brittle silicon. Conducting polymers on the other hand are easily
fabricated in a flexible manner.[191,192]

A 4×4 array of dome-shaped soft structures based on two con-
ducting polymers is proposed as electronic skin prototype.[170]

The underlying OFET devices exhibit synaptic behavior that al-
lows processing of incoming pressure stimuli. A simulation of
an artificial neural network based on the synaptic devices is able
to classify different pen-drawn input patterns and shows a high
tolerance to input noise.

A larger array of 12x14 array of ZnO nanowire transistors
demonstrates high stability even under bending conditions.
Through associative learning via spiking pulses in a synaptic de-
vice, a robot arm acquires a pain reflex.[169] Larger arrays are
needed to ensure good distribution of sensors and coverage of
bigger areas.

An electronic skin made from commercially available compo-
nents on a robotic hand is used to distinguish between round
and sharp objects encoded in a software spiking system.[188] The
spiking system is then connected with electrodes placed on the an
amputees arm at carefully mapped regions of finger sensations.
The amputee is able to feel the different types of objects similar
to the feel with their own skin. The robotic hand is programmed
to show an automated pain reflex in case of the sharp object as a
measure of self-preservation. The spiking architecture is not only
a biomimetic encoding of information, it is capable of accurately
mimicking and replacing the response of human skin.

Embodiment and as such artificial skin supports and promotes
intelligent information processing through large-area distribu-
tion of organic synaptic sensors. The mechanical design (soft-
ness, flexibility) additionally supports the processing of sensory
information. Organic transistors provide the right interface for
spike-based processing,[18,19] local learning with multimodal sen-
sor inputs and allow fabrication on flexible, soft substrates. One
remaining limiting factors, here is the poor scalability and device-
to-device variability of the current fabrication processes (i.e., me-
chanical peel-off). For that, new reproducible fabrication tech-
niques that allow for large-scale integration are needed. If it suc-
ceeds to bring all of these characteristics into a unified system,
the realization of artificial electronic skin is one step closer to re-
ality.

5.1.4. In Sensor Computing

The physical separation of sensors and processors in conven-
tional electronics leads to an inherent bottleneck when moving
data. The bandwidth and latency of the system are internal limit-
ing factors. Most data also has a high level of redundancy that is
only eliminated after being passed to the processor. This causes
unnecessary energy consumption and strain on the transmission
line. Additionally, a conversion from analog to digital domain is
generally needed, which entails energy consumption and loss of
precision. To reduce this huge data flux from sensors to com-
puting unit, a shift from conventional computing architecture
toward local processing has been proposed. In-sensor comput-
ing or on-site computing aims to perform low-level tasks (filter-
ing, noise reduction, amplification, pre-assortment of data) and

even more advanced computations like classification within or
close to the sensory device.[193] Local computation can lower the
data load toward the main processor and thus increases the en-
ergy efficiency of the system. Besides data transfer is not with-
out risks, especially when working with sensitive biometric data
(i.e., heartbeat). With in-sensor computing, many safety and cy-
bersecurity concerns can be bypassed since the goal is to pro-
cess most data before it leaves the sensor. At the same time, a
direct processing of data also eliminates sources of noise that
can occur in the system. Sensor-rich systems (autonomous ve-
hicles, intelligent robots, wearable electronics) show a high po-
tential for a profitable implementation of in-memory computa-
tion (Figure 5g,h). The unique combination of biocompatibility,
flexibility, and low voltage (neuromorphic) operation makes con-
ductive polymers particularly interesting for the realization of au-
tonomous and wearable smart sensing systems (Figure 5i).

Initial implementations of a wearable sensor based on con-
ductive polymer PEDOT:PSS are used to monitor cortisol and
ion concentrations in human sweat,[83,194] this concept can be ex-
tended to other fluids and gases.[195] The patches adhere directly
to the human skin without causing irritation due to the biocom-
patible nature and flexible design (Figure 5i).

An organic (P-30) inverter with a neuromorphic component
amplifies the electrocomyography signal of different hand ges-
tures while preserving the defining envelope.[10] The different
gestures require distinct amplification that is adapted through
the tunable response of a neuromorphic element. A simulation
of 125 organic neuromorphic elements organized in an artificial
neural network classifies five different electrocardiography sig-
nals with close-to-software accuracy. A similar concept is intro-
duced by ref. [171]. They also provide a proof-of-principle 3x3 ar-
ray of organic transistors that showcases vector matrix multipli-
cation need for artificial neural networks and withstands strong
stretching without forfeiting performance (Figure 6c).

This illustrates the strength of fusing in-sensor computing and
wearable organic technologies toward smart autonomous sen-
sors enabling personalized high precision health monitoring and
chronic implants.

However, the proposed fabrication methods for these wear-
ables rely on techniques (blade coating, isolation by razor cut,
dropcasting) and components (paste, liquid electrolyte) that are
not suited for larger-scale integration of these devices. This
makes it difficult to move beyond proof-of-principle demonstra-
tions.

A similar issue emerges when looking at long term stability
and safety in performance. While many implementations speak
of high performance metrics (on-off ratio, state retention, linear-
ity, number of conductance states) for organic transistors, mea-
surement conditions often present idealized (i.e., under inert gas)
or custom-tailored (i.e., varying length for long-term state reten-
tion, preconditioning of devices). There is no agreed protocol for
standard measurement that not only makes it difficult to com-
pare devices but also limits the meaningfulness of the measure-
ments. Additionally, many (semi-)conducting polymers are not
commercially available (yet) that obstructs research efforts and
limits benchmarking attempts.[196] For now, it remains very dif-
ficult to make predictions about the long-term performance and
safety, a key requirement when moving toward in-sensor on-/in-
body computation.
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5.2. Neuromorphic/ Brain-Inspired Computing Systems

After the (artificial) sensory system takes in the relevant data and
forward it to the central nervous system, huge networks of cells or
devices are needed to perform further processing (Figure 5j,m).
Artificial neural networks kick-started the revolution of software
AI, but now the research focus is also shifting to hardware-based
network architectures.[197] While a lot of simulative research is
being conducted in this field, this review focuses on physical im-
plementations of such computing systems with real-life applica-
tions.

5.2.1. Neuromorphic Crossbar Arrays

Artificial neural networks and machine learning have become
a very important tool for data analysis over the last decade
(Figure 5m). With an ever-growing data feed, the reliance on AI
is expected to thrive even more. However, with the continuous
use, the drawbacks also become more obvious: large memory
storage and high energy demand. One solution looks at apply-
ing computing principles similar to the ones the brain uses. Per-
forming computing within a single device that also stores infor-
mation is referred to as ‘in-memory’ computing. This solves two
problems: first, the data transfer between computing and mem-
ory unit is eliminated and analogue data is processed directly.
Second, computations can run in parallel using physical laws
(Kirchhoff, Ohm).[198] Crossbar arrays offer the ideal architecture
for this, enabling vector-matrix multiplication between input and
output lines (Figure 5n).

Via read and write pulses, the state of the devices changes per
column and row allowing massive parallelization of the update.
Access devices (switch, transistor etc.) are often required to en-
able or block the connection to the memory elements. Other re-
quirements for operation are: linear switching behavior for pre-
dictable states, low read, and write currents for low energy con-
sumption, prevention of sneak paths, high number of low-noise
conductance states for stable operation.[198]

Three terminal devices such as the organic transistor decou-
ple read and write pulse by design that allows for write currents
below 10nA that overcome conventional computing efficiency.
The conductive polymers are easily adapted to their purpose, by
adding chemical additives the overall resistance and threshold
voltage are adjusted to the system’s demands.[30] In a 3x3 array,
the nonlinear XOR function is realized via parallel programming
(Figure 6e). The device performance is highly linear. A simulation
of 1024x1024 devices for MNIST classification shows software-
like accuracy. Similar small-scale implementations of physical
crossbar arrays have been shown, but never exceeding an array
size of 3×3.[171,174,175]

Most of the research for large-scale integration is still con-
ducted in simulation,[10,30,171] as the fabrication technology is
still advancing. Many parameters regarding channel material and
electrolyte are not yet perfected and need to be investigated fur-
ther. This leads to a high device-to-device variability that makes it
almost impossible to control neuromorphic devices in a collective
update, as each device reacts differently.

At the same time, many neuromorphic crossbar arrays are
designed to follow existing computing algorithms, but this dis-

misses and excludes the use of unique device characteristics.
Inherent stochasticity and slower dynamics (μs to ms) are for
example attributes present in the brain that are typically dis-
carded as undesired. Collaborative research efforts across mul-
tiple disciplines (engineering, computer science, neuroscience,
biology, mathematics) are required to develop new computing al-
gorithms.

5.2.2. Spiking Neural Networks

Biological neurons encode and transfer information through dis-
crete action potentials known as “spikes”. This makes neuron
effectively “active” only when they receive or fire spike trains,
making them event-driven and time-dependent functional units.
Sparse and efficient information encoding through spikes is
thought to be one of the main reasons for the high energy effi-
ciency and robustness to noise displayed by biological neural net-
works.

Most software and hardware neural networks employed today
adopt a non-spiking information transfer.[199] However, inspired
by the efficiency of biological neurons, in the last decades several
efforts have been made to implement neuromorphic hardware as
artificial spiking neural networks, encoding information through
discrete spike events rather than real-valued numbers (as in clas-
sical artificial neural networks).[200,201] Given the fact that spikes
are discrete and non-differentiable, conventional learning algo-
rithms based on gradient back-propagation cannot be applied on
this type of networks (see Section 6). However, spiking neural net-
works allow to leverage STDP, a local learning rule that modifies
the synaptic strength based on the relative timing of the spiking
activities of the two connected neurons. In particular, if the pre-
synaptic neuron fires just before the post-synaptic neuron, the
connection is strengthened, while if the pre-synaptic neuron fires
just after the post-synaptic neuron, the connection is weakened.

Spiking neural networks have already been implemented in
hardware with conventional CMOS processes, such as, to name
but a few, the Loihi,[202] and SpiNNaker[203] manycore processors.
More recently, implementation of spiking neurons leveraging or-
ganic electronics have also emerged.[19,204] However, the step to-
ward an organic spiking network still has to be made. Thanks
to their event-driven functioning, spiking neural networks will
prove useful in embedded systems, and enable edge computa-
tion and ubiquitous intelligence.[200]

5.2.3. Reservoir Computing

Even though brain-inspired computing systems have already suc-
ceeded in integrating biomimetic computing paradigms such as
synaptic plasticity and spiking encoded information processing,
a few crucial factors are still missing: mainly global connection
and stochasticity. In the brain, there is a very high connectivity
between cells including many unordered and redundant connec-
tions between them. The high redundancy allows the brain to
perform multiple tasks at once, hence it processes a variety of in-
formation in parallel.[205] Additionally, brain cells all operate in
the same wet’ environment, which additionally couples them via
a global electrolyte. This allows cross-talk between the cells and
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introduces noise and stochastic components into the system. The
synapse itself also operates by stochastic release of neurotrans-
mitter vesicles.[159]

With reservoir computing a new concept based on recur-
rence and randomness was born.[206] A (fixed) network of ran-
domly linked nodes (the reservoir) maps an input signal into
a higher dimensional space via non-linear transformation in
the reservoir (Figure 5k). The dynamics of the reservoir net-
work are fixed, random, and incorporate transient behaviors such
as fading memory/echo states (short-term memory). The out-
put signal of the reservoir provides now-separable states that
are forwarded to a simple trainable read-out mechanism for
classification.[207] Physical reservoirs for computing take advan-
tage of natural phenomena with non-linear behavior (i.e., water
ripples).

Conductive polymers have recently proven themselves as great
candidates for physical reservoirs. Through electropolymeriza-
tion of monomer TEDOT, electrodes are covered with TEDOT-
polymer films of varying morphology forming OECTs. The dif-
ference in structure also results in a stochastic influence regard-
ing electrical performance. For the same input signal of two dis-
tinct wave shapes (triangle and square), each of the twelve OECT
devices has a unique output characteristic. The output signals
of the OECTs are fed into a simple network to classify the wave
types with very high accuracy.[208] Further analysis shows that the
high variability of devices is indeed needed to perform well at the
classification tasks. This bottom-up assembly of highly variable
devices through electropolymerization forms a stark contrast to
the normally desired precise top-down fabrication of uniform de-
vices, but in this case the non-uniformity plays in favor of the sys-
tem.

A physical reservoir with redundant and recurrent connections
is introduced by Cucchi et al.[54] They grow a non-linear, den-
dritic network of OECTs through electropolymerization of PE-
DOT:PF6 (Figures 5l and 6d). The PEDOT:PF6 fibers connect
through a global electrolyte allowing cross-talk and form exci-
tatory (bridges) and inhibitory (dead-ends) branch architectures.
The dendritic reservoir performs non-linear transformations of
time-series data as proven with sine wave frequency transforma-
tions. It is then used to perform several computations tasks in
combination with a linear regression model in software: (flower)
classification and (stock market) time series prediction. As final
test, biosignals such as arrhythmic heartbeats are classified with
an accuracy of 88%. The reservoir system proves itself as very en-
ergy efficient, biocompatible computing system that needs only
minimal training.

A similar application employing a nanoscale reservoir network
of sulfonated polyaniline is shown in ref. [172]. They demonstrate
an accuracy of 70% for the classification of cochleagrams by us-
ing the non-linear transformation of the reservoir in combination
with ridge regression.

An all-organic-based system demonstrates a larger-scale im-
plementation for classification tasks.[173] The light-reactive semi-
conducting polymer p-NDI shows fading memory characteristics
as OFET that allow the implementation for reservoir comput-
ing. The reservoir is organized as a crossbar array. The analysis
of the reservoir output signal is handled by memristive organic
diodes. The fully-organic system achieves an overall accuracy of
88% for classifying the MNIST and FMNIST data sets. It is how-

ever unclear, how the recurrency and high variability of devices
are achieved in the reservoir.

Reservoir computing is a great example of material-algorithm
co-design. The strength that comes from adapting algorithms
into or for specific computing systems becomes apparent in
the high energy efficiency and simple (re-)trainability of reser-
voir systems. It is important to give more thought to the mean-
ingful interaction and fusion of device operation and learning
algorithm.

6. Learning Algorithms for Neuromorphic
Applications

In the fast growing field of organic neuromorphic comput-
ing, much emphasis has been put on the development of new,
synapse-like materials, trying to reproduce some of the biophysi-
cal features of biological neurons.[1,4,209] This led to a large variety
of neuro-inspired materials and devices, each with unique char-
acteristics, such as operation speed, energy consumption, and
resemblance to their biological counterpart. However, this has
not yet been followed by device standardization, characterization,
and their systemic integration into larger ensembles of connected
devices. To implement complex behaviors and functions with or-
ganic neuromorphic devices such integration and scaling are es-
sential, and they must be accompanied by the development of
novel learning algorithms.[210]

Currently, research into neuromorphic learning algorithms is
still lagging behind compared to the effort put into developing
new (organic) neuromorphic systems for two reasons.[4,211] First,
much of the neuroscience research in the past years has focused
on dissecting the structures responsible for cognitive tasks in the
brain, but to date, we still have a poor understanding of how
complex cognitive functions emergence from a network of local
synaptic interactions.[212,213] Second, contrary to neural networks
implemented in software, the variety of neuromorphic devices
and their characteristics entails that there is no one-size-fits-all
algorithm that can be applied to train these devices.

What made the use of software neural network possible
and ubiquitous for AI applications was the combination of the
backpropagation algorithm and optimizers based on gradient
descent.[214] Although several variations exist, most of the soft-
ware neural networks that are employed today are trained with
these two algorithms. However, reproducing these two meth-
ods in hardware neural networks without involving some form
of digital computation is not trivial.[210,215–217] Backpropagation
requires complete knowledge of all computations in the for-
ward pass and memory to store their results, while gradient
descent requires to compute the derivatives of a differentiable
mathematical model. Moreover, software neural networks are all
based on digital representations of their weights, while hard-
ware neural networks store them exploiting different physical
phenomena.[218,219]

Given the variety of architectures and materials used in neu-
romorphic computing, new learning algorithms need to be
co-designed together with their hardware counterpart.[215] In
this way, the learning algorithm can be tailored to the char-
acteristics of the operating devices, such as number of states,
(non)linearity, noise, switching mechanism, and energy required
per state switch.
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Figure 7. Schematic representation of the elements that constitute a neuromorphic application. The architecture of the network constrains the choice
of learning algorithm and paradigm. The latter two in turn interact to train the network and achieve successful neuromorphic applications. In each box,
examples of approaches that are alternative to the ones established in the literature for software neural networks are reported.

Neuromorphic computing offers the opportunity to go beyond
the dominant paradigm in software neural networks, that is, su-
pervised learning in deep networks trained with backpropaga-
tion. We envision that organic neuromorphic applications could
benefit from the investigation of novel approaches in three dif-
ferent areas of neuromorphic computing (Figure 7):

• different network architectures, such as spiking and event-
driven networks and reservoir computing;

• different learning algorithms, such as the ones not involving
gradient computation and global information sharing;

• different learning paradigms, such as unsupervised and rein-
forcement learning, and their application in online and con-
tinuous on-chip learning.

While neuromorphic architectures were already discussed in
Section 5.2, we discuss opportunities and challenges offered by
different learning approaches in the following sections.

6.1. Gradient-Based and Gradient-Free Learning

The backpropagation algorithm allowed to scale up the size of
software neural networks, efficiently training large networks of
mathematical transformations in the digital domain to achieve
complex tasks.[2,220,221] Neuromorphic devices embody these
transformations in hardware, by exploiting physical processes
that are in principle isomorphic to their digital representations.
As a consequence, many neuromorphic devices are trained on
conventional computers, by performing digital computations
and then mapping the digital network’s weights to their physi-
cal counterparts.[5,222–224] However, performing the training of the
neuromorphic devices on a digital machine poses two main draw-
backs: digital operations are slower and less energy efficient than
in hardware operations, and the mapping between the “physical”
and digital weights is not always straightforward, as the latter do
not take into account noise and non-linearities typical of physical
systems. Several methods are being developed to address these
challenges in non-organic neuromorphics, some of which could
also be applied to organic devices.

In ref. [216], the authors present a general-purpose, physics-
aware training framework that addresses these challenges by us-
ing mismatched forward and backward passes while training
with backpropagation. The forward pass is performed directly in
the hardware, while the backward pass is executed on a digital
machine that employs a differentiable computational model of
the neuromorphic device and the outcome of the forward pass to
calculate the gradients of the loss function with respect to the
trainable parameters. The physics-aware training outperforms
fully digital training (even when employing the same compu-
tational model) in classification tasks using neuromorphic de-
vices implemented with mechanical, electronic, and optical de-
vices, thanks to the energy-efficient, in hardware execution of the
forward pass accounting for noise and non-linearities. However,
this method still requires an accurate and differentiable compu-
tational model, which might not be readily available, and the cal-
culation of the gradients on a digital machine.

To avoid the use of digital simulations, Zhang et al.[225] intro-
duce a novel on-chip learning algorithm for multilayer neural
networks implemented on resistive random access memory neu-
romorphic devices. The algorithm, named sign backpropagation,
is based on the idea of backpropagating the sign of the error be-
tween the device output and the data label, using this informa-
tion to perform discrete updates of the resistive memory states.
Such backward pass is implemented with auxiliary logic circuits,
which allow the neuromorphic devices to converge and achieve
state of the art accuracy on the MNIST dataset. Albeit its scala-
bility needs to be proven, the use of limited information during
the backward pass could inspire new learning algorithm for de-
vices where complete knowledge on the errors’ gradients is not
available, such as in organic neuromorphic devices.

As mentioned before, other optimization algorithms can be
employed to learn the network weights without the need of gra-
dient information. Such gradient-free strategies generally rely
on the use of global optimization algorithms[226,227] or reinforce-
ment learning,[228] which treat the neuromorphic device as a
“black box” performing the inference phase of the learning. As
a consequence, such algorithms do not need detailed informa-
tion regarding the physical properties of the devices or the errors’
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gradients, and they can naturally incorporate sources of physi-
cal noise in the inference phase performed on-chip, something
that is hard to achieve with offline digital modeling. For example,
in ref. [229] the authors develop a physics-agnostic, gradient-free
learning framework based on a genetic algorithm[230] to train op-
tical neural networks. Genetic algorithms take inspiration from
natural selection to evolve a population of candidate solutions by
means of “genetic operators” (namely crossover, and mutation)
until an optimum is reached. Thanks to their ease of implemen-
tation and lack of complex mathematical operations, the authors
implemented a genetic algorithm on an auxiliary digital circuit
used to train and control the optical neuromorphic chip. The re-
sults show that the learning algorithm exploiting the genetic algo-
rithm outperforms digital training based on gradient descent, in
classification tasks across different datasets (iris, MNIST, CIFAR-
10), and across several device architectures. Moreover, the ge-
netic algorithm-based method scales better in terms of power
consumption and latency time with increasing neural network
sizes. Thanks to these characteristics, genetic algorithms and
other gradient-free algorithms are a valuable tool to perform on-
chip learning, and they could be used to train organic neuromor-
phic devices in supervised or reinforcement learning schemes.

6.2. Reinforcement and Unsupervised Learning

Most of software neural networks that are being used today are
trained with a supervised learning paradigm, that is, they learn
from large datasets comprising labeled examples. Albeit very suc-
cessful in some fields (for example, in image recognition), this
paradigm also presents a few drawbacks that hinder its appli-
cability on neuromorphic hardware. Labeled datasets require a
larger storing capacity, and for many real-world datasets labels
are not readily available or time-consuming to obtain, such as
for biomedical applications. Moreover, supervised learning in-
herently requires to separate the training phase from the perfor-
mance evaluation phase. Different learning paradigms exist, that
can address these limitations and widen the range of applicabil-
ity of neuromorphic devices, namely unsupervised learning and
reinforcement learning.

In reinforcement learning, an intelligent agent learns a se-
ries of actions that maximizes cumulative rewards (or minimizes
punishments) provided by the environment it interacts with.[228]

This paradigm proves to be particularly successful for neuro-
morphic applications: on the one hand, it allows for gradient-
free learning, while on the other hand neuromorphic hardware
can interact directly with the real environment to get rewards or
punishments. For example, Amaravati et al.[231] present a mobile
robot able to learn to avoid obstacles thanks to a CMOS-based
spiking neuromorphic chip, coupled with digital circuits and a
digital microprocessor implementing a reinforcement learning
procedure. Similar approaches have proven successful as well in
the field of organic neuromorphic,[11] and they could be further
exploited by coupling reinforcement learning and gradient-free
learning algorithms to train larger networks and achieve more
complex tasks.

In ref. [232], the authors present a learning-to-learn framework
for training neuromorphic hardware. Learning-to-learn consists
of two nested optimization procedures: an inner optimization

loop, where a (hardware) neural network is trained to solve a
specific task; and an outer loop that optimizes the learning per-
formance across a range of different tasks. This framework en-
dows artificial learning systems with transfer learning capabili-
ties, making it possible to faster achieve better performances for
a wide class of similar tasks. These two loops learn features at
different time-scales (the inner loop being the faster one, and the
outer loop the slower one), mimicking many learning processes
that can be found in nature, such as evolution/adaption dynam-
ics and fast/slow learning in the amygdala and striatum regions
of the brain.[228] Specifically, in ref. [232] the inner learning loop
involves a reinforcement learning problem, while the outer loop
is implemented as an evolutionary strategy, a gradient-free algo-
rithm that emulates evolutionary processes[233,234] similarly to ge-
netic algorithms (previously discussed in Section 6.1). By training
a CMOS-based spiking neural network, the authors show how
learning-to-learn can improve both speed and performance of re-
inforcement learning, while, at the same time, producing intel-
ligent agents that can extract abstract knowledge from previous
experiences and speed up the learning of new, but related tasks.

Given how organic neuromorphic devices display memory ef-
fects at different time-scales, and they can naturally interact with
reward/punishment molecules present in biological nervous sys-
tems (such as neurotransmitters), we argue that reinforcement
learning approaches could be readily leveraged to train such de-
vices.

Unlike supervised and reinforcement learning, in unsuper-
vised learning the learning agent is tasked with forming homo-
geneous groups out of unlabeled data, a process known as clus-
tering, in order to capture emerging patterns within the dataset.
Several attempts have been made in the software domain to train
neural networks in an unsupervised fashion, resulting in meth-
ods such as self-organizing maps[235] and neural gas.[236] Both of
these methods exploit lateral connections between the neurons
that enable the synaptic weights to self-organize and map data
into a lower feature space, forming clusters.

Specifically, the goal of unsupervised learning is to have neu-
rons that are close in the network to fire together in response
to similar groups of input data, while neurons that are further
away in the network should fire in response to different types of
data. This emerging behavior is achieved by means of two types
of lateral connections: excitatory connections, if the highest firing
neuron promotes firing of its neighboring neurons; inhibitory
connections, if the highest firing neuron decreases activation of
the other neurons (winner-takes-all). Such connections are in-
spired by learning phenomena observed in biological neurons,
such as STDP.

Lateral inhibition/excitation was exploited to implement un-
supervised learning on neuromorphic hardware implemented on
conventional CMOS processes. Diamond et al.[237] develop an un-
supervised neuromorphic clustering algorithm that operates on
CMOS-based spiking neuromorphic hardware. The neuromor-
phic network consists of three layers of spiking neurons, con-
nected with synapses endowed with STDP. In the last two layers,
each neuron is also connected to its neighboring neurons in the
same layer by means of inhibitory lateral connections, ensuring a
“winner-takes-all” effect once the neuron is fired. After training,
this system achieves clustering performance comparable to state-
of-the-art digital algorithms, such as self-organizing maps, neural
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gas and k-means, when tested on the MNIST dataset. A similar
approached is followed in ref. [238], where a resistive random ac-
cess memory crossbar array displaying lateral inhibitory connec-
tions is trained using STDP and reached high test accuracy on
the same dataset. Existing examples of unsupervised learning in
organic neuromorphic hardware are mainly based on STDP, and
have been demonstrated only at single-device level.[239–241] Learn-
ing with STDP in organic spiking networks has been demon-
strated only by means of computational analyses.[242]

We argue that incorporating lateral connections and im-
plementing unsupervised learning paradigms to enable self-
organization of network weights may have significant advantages
for organic neuromorphic devices. Inhibitory connections and
winner-takes-all behaviors could effectively limit the cross-talk
between synapses that frequently affects large networks, by “si-
lencing” non-firing neurons. Weight self-organization could re-
duce the effects arising from device-to-device variability, by hav-
ing synapses adjust their state on the basis of the other networks
units surrounding them.

6.3. Online and Continuous Learning

Learning in the brain is inherently time-dependent, and our
brains continuously receive sensory stimuli and, at the same
time, learn from them, without a clear separation between train-
ing and inference phases. Many modern AI applications deal
with continuous data streams as well, such as autonomous ve-
hicle control and smart health monitoring devices.[217] Thanks
to their physical implementation, inherent parallelization, and
the fact that they can be physically connected to sensory sys-
tems, neuromorphic devices represent a promising tool to con-
tinuously learn from data streams.

Significant efforts in this direction have already been
made with CMOS-based neuromorphic hardware. Imam and
Cleland[243] show the implementation of an online learning al-
gorithm on a neuromorphic olfactory circuit implemented on
Intel Loihi neuromorphic hardware. Specifically, the algorithm
exploits STDP to train the chip to recognize different odourants
from the activity of chemosensor arrays mounted in a wind tun-
nel. The authors show that the algorithm can efficiently train the
hardware in distinguishing up to ten different chemical species,
with performances comparable to digital processing and digital
deep neural networks. The neuromorphic approach outperforms
digital neural networks when tasked with one-shot or few-shots
learning, and in online and continuous learning settings, it dis-
played the ability to generalize beyond experience. Remarkably,
contrary to digital networks, the neuromorphic chip maintains
the memory of previously learned patterns after training on new
ones. Learning on neuromorphic hardware could prove useful
in embedded systems deployed in unpredictable environments,
where rapid, robust, and energy efficient learning matters.

Continuous learning algorithms can also be used to mitigate
some of the limitations affecting organic neuromorphic hard-
ware. In ref. [244], the authors design a computational model of
a crossbar array consisting of PEDOT:PSS synapses to demon-
strate how algorithm-hardware co-design can efficiently counter-
act state loss and self-discharge due to parasitic reactions in elec-
trochemical synapses. The authors use periodic reminder pulses

to restore the programmed state on the synapses, showing how
these pulses can be tuned to maintain high classification perfor-
mance with a limited increase in energy cost. However, long-
term forgetfulness could also be exploited as useful feature in
continuous learning, for example to erase learned patterns that
are not useful anymore, or to achieve learning at different time-
scales.[228]

Given their characteristics, neuromorphic hardware and algo-
rithms could open the way to online and continuous learning in a
more accurate and energy efficient way when compared to digital
software implementations. Organic neuromorphics in particular
could be exploited for continuous learning tasks in soft robots,
in bio-hybrid applications, and in wet-ware sensing and comput-
ing devices.

7. Challenges and Outlook

The field of organic electronics has made significant advance-
ments in the last decade, especially in the design of novel bio-
inspired and biomimetic materials that found applications in
smart sensors and neuromorphic hardware. However, several
challenges still lie ahead and need to be addressed in order to
achieve reliable, fully-integrated sensing, and neuromorphic de-
vices displaying complex computing capabilities.

The introduction of novel CPs should be accompanied by thor-
ough characterization of their physicochemical properties. In this
regard, computational modeling can further improve our un-
derstanding of polymer properties and possibly guide material
design. Taken together, modeling, and characterization will fa-
cilitate the standardization of device fabrication and measure-
ments, and help in establishing common benchmarks to test
their performances. Although a call for standardization was pre-
viously made,[13,22] additional efforts are required in order to truly
achieve it.

Characterization of CPs and standardization of fabrication will
allow to scale up the integration of several computing/sensing
units into single devices. Moreover, they might prove useful in
tackling the limitations that still affect the integration of many
devices into a monolithic system, such as parasitic currents and
device-to-device variability. Having multiple, integrated comput-
ing units will be fundamental to increase the computational
power of the organic devices and making them able to imple-
ment more complex behaviors for smart sensing and neuromor-
phic applications.

The design of learning algorithms for organic neuromorphic
applications poses some new challenges as well. Differently from
software neural networks, learning algorithms based on gradi-
ent calculation and backpropagation are difficult to implement
on neuromorphic hardware, due to limited memory capacity and
the requirement for global information sharing to communi-
cate neural activities across the entire network. In contrast, bi-
ological neural networks exhibit local synaptic plasticity, where
synapses have access only to the activity of upstream and down-
stream neurons they are connected to. To overcome these limi-
tations, research efforts need to go beyond the paradigm estab-
lished by software neural networks based on supervised learn-
ing and backpropagation. Several approaches based on gradient-
free optimization and local information processing already exist
in software, but their application in hardware has yet to be fully
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investigated.[229,245,246] More in general, learning algorithms need
to be co-designed with novel organic hardware, so that the former
can exploit the peculiar features of the latter.

Organic electronics offers the unique opportunity to imple-
ment smart sensors and neuromorphic devices that interact with
or mimic living matter, thanks to its soft-nature, the ability to
be chemically functionalized, and act as an ionic transducer.
We envision that such devices will prove useful in hybrid bio-
machine interfaces, to implement smart wetware able to com-
pute in liquid environments and inside or in contact with liv-
ing organisms. The scale-up of device integration and better
learning algorithms will pave the way to smart point-of-care de-
vices, implants and prostheses,[247,248] bio-mimetic robots,[168]

and computing systems able to perform classification and neuro-
optimization.[10,249,250]

Acknowledgements
I.K., C.-T.C., and S.S. contributed equally to this work. The authors acknowl-
edged Koen Pieterse and Milan van Wezel from the ICMS Animation Stu-
dio for their significant contributions in the design and realization of the
illustrations. This work was funded by a joint project between the Max
Planck Institute for Polymer Research and the Institute for Complex Molec-
ular Systems (ICMS), Eindhoven University of Technology, grant number
MPIPICMS2019001 (to Y.v.d.B., I.K., and P.G.); European Union’s Horizon
2020 Research and Innovation Programme, grant agreement no. 802615
(to Y.v.d.B., C.T.C., and S.S.); the Carl-Zeiss Foundation (to P.G.).

Conflict of Interest
The authors declare no conflict of interest.

Keywords
brain-inspired, conductive polymers, hardware computing, neuro-
inspired, organic bioelectronics, organic electrochemical transistors,
organic neuromorphic computing

Received: July 6, 2023
Revised: September 10, 2023

Published online: October 22, 2023

[1] A. Mehonic, A. J. Kenyon, Nature 2022, 604, 255.
[2] Y. LeCun, Y. Bengio, G. Hinton, Nature 2015, 521, 436.
[3] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,

A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A.
Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D.
Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I.
Sutskever, et al., in Advances in Neural Information Processing Sys-
tems, Vol. 33, Curran Associates, Inc., Red Hook, NY, USA 2020, pp.
1877–1901.

[4] Y. van de Burgt, A. Melianas, S. T. Keene, G. Malliaras, A. Salleo,
Nat. Electron. 2018, 1, 386.

[5] Y. Van De Burgt, E. Lubberman, E. J. Fuller, S. T. Keene, G. C. Faria,
S. Agarwal, M. J. Marinella, A. Alec Talin, A. Salleo, Nat. Mater. 2017,
16, 414.

[6] A. Melianas, T. J. Quill, G. LeCroy, Y. Tuchman, H. v. Loo, S. T. Keene,
A. Giovannitti, H. R. Lee, I. P. Maria, I. McCulloch, A. Salleo, Sci. Adv.
2020, 6, eabb2958.

[7] Y. Kim, A. Chortos, W. Xu, Y. Liu, J. Y. Oh, D. Son, J. Kang, A. M.
Foudeh, C. Zhu, Y. Lee, S. Niu, J. Liu, R. Pfattner, Z. Bao, T.-W. Lee,
Science 2018, 360, 998.

[8] S. Wang, L. Peng, H. Sun, W. Huang, J. Mater. Chem. C 2022, 10,
12468.

[9] A. Giovannitti, D. T. Sbircea, S. Inal, C. B. Nielsen, E. Bandiello, D.
A. Hanifi, M. Sessolo, G. G. Malliaras, I. McCulloch, J. Rivnay, Proc.
Natl. Acad. Sci. USA 2016, 113, 12017.

[10] Y. Zhang, E. R. W. van Doremaele, G. Ye, T. Stevens, J. Song, R. C.
Chiechi, Y. van de Burgt, Adv. Mater. 2022, 34, 2200393.

[11] I. Krauhausen, D. A. Koutsouras, A. Melianas, S. T. Keene, K.
Lieberth, H. Ledanseur, R. Sheelamanthula, A. Giovannitti, F.
Torricelli, I. Mcculloch, P. W. M. Blom, A. Salleo, Y. van de Burgt,
P. Gkoupidenis, Sci. Adv. 2021, 7, 50.

[12] W. Wang, Y. Jiang, D. Zhong, Z. Zhang, S. Choudhury, J.-C. Lai, H.
Gong, S. Niu, X. Yan, Y. Zheng, C.-C. Shih, R. Ning, Q. Lin, D. Li,
Y.-H. Kim, J. Kim, Y.-X. Wang, C. Zhao, C. Xu, X. Ji, Y. Nishio, H. Lyu,
J. B.-H. Tok, Z. Bao, Science 2023, 380, 735.

[13] D. T. Simon, E. O. Gabrielsson, K. Tybrandt, M. Berggren, Chem.
Rev. 2016, 116, 13009.

[14] T. Nezakati, A. Seifalian, A. Tan, A. M. Seifalian, Chem. Rev. 2018,
118, 6766.

[15] C. Pitsalidis, A.-M. Pappa, A. J. Boys, Y. Fu, C.-M. Moysidou, D. van
Niekerk, J. Saez, A. Savva, D. Iandolo, R. M. Owens, Chem. Rev.
2022, 122, 4700.

[16] A. Koklu, D. Ohayon, S. Wustoni, V. Druet, A. Saleh, S. Inal, Chem.
Rev. 2022, 122, 4581.

[17] P. Gkoupidenis, N. Schaefer, B. Garlan, G. G. Malliaras, Adv. Mater.
2015, 27, 7176.

[18] P. C. Harikesh, C.-Y. Yang, D. Tu, J. Y. Gerasimov, A. M. Dar, A.
Armada-Moreira, M. Massetti, R. Kroon, D. Bliman, R. Olsson,
E. Stavrinidou, M. Berggren, S. Fabiano, Nat. Commun. 2022, 13,
901.

[19] T. Sarkar, K. Lieberth, A. Pavlou, T. Frank, V. Mailaender, I.
McCulloch, P. W. M. Blom, F. Torricelli, P. Gkoupidenis, Nat. Elec-
tron. 2022, 5, 774.

[20] C. Dimitrakopoulos, P. Malenfant, Adv. Mater. 2002, 14, 99.
[21] J. Rivnay, M. Ramuz, P. Leleux, A. Hama, M. Huerta, R. M. Owens,

Appl. Phys. Lett. 2015, 106, 043301.
[22] D. Ohayon, V. Druet, S. Inal, Chem. Soc. Rev. 2023, 52, 1001.
[23] B. D. Paulsen, K. Tybrandt, E. Stavrinidou, J. Rivnay, Nat. Mater.

2019, 19, 13.
[24] S. Wang, X. Chen, C. Zhao, Y. Kong, B. Lin, Y. Wu, Z. Bi, Z. Xuan, T.

Li, Y. Li, W. Zhang, E. Ma, Z. Wang, W. Ma, Nat. Electron. 2023, 6,
281.

[25] J. Y. Gerasimov, R. Gabrielsson, R. Forchheimer, E. Stavrinidou, D.
T. Simon, M. Berggren, S. Fabiano, Adv. Sci. 2019, 6, 1801339.

[26] H. Kleemann, K. Krechan, A. Fischer, K. Leo, Adv. Funct. Mater. 2020,
30, 1907113.

[27] W. Huang, J. Chen, Y. Yao, D. Zheng, X. Ji, L.-W. Feng, D. Moore, N.
R. Glavin, M. Xie, Y. Chen, R. M. Pankow, A. Surendran, Z. Wang,
Y. Xia, L. Bai, J. Rivnay, J. Ping, X. Guo, Y. Cheng, T. J. Marks, A.
Facchetti, Nature 2023, 613, 496.

[28] D. A. Koutsouras, F. Torricelli, P. Gkoupidenis, P. W. M. Blom, Adv.
Mater. Technol. 2021, 6, 2100732.

[29] Q. Xia, J. J. Yang, Nat. Mater. 2019, 18, 309.
[30] E. J. Fuller, S. T. Keene, A. Melianas, Z. Wang, S. Agarwal, Y. Li, Y.

Tuchman, C. D. James, M. J. Marinella, J. J. Yang, A. Salleo, A. A.
Talin, Science 2019, 364, 570.

[31] J. R. Chan, X. Q. Huang, A. M. Song, J. Appl. Phys. 2006, 99,
023710.

[32] D.-S. Leem, P. H. Wöbkenberg, J. Huang, T. D. Anthopoulos, D. D.
C. Bradley, J. C. deMello, Org. Electron. 2010, 11, 1307.

[33] J. A. DeFranco, B. S. Schmidt, M. Lipson, G. G. Malliaras, Org. Elec-
tron. 2006, 7, 22.

Adv. Funct. Mater. 2024, 34, 2307729 2307729 (25 of 30) © 2023 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH

 16163028, 2024, 15, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adfm

.202307729 by M
PI 355 Polym

er R
esearch, W

iley O
nline L

ibrary on [08/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.afm-journal.de


www.advancedsciencenews.com www.afm-journal.de

[34] M. Braendlein, A.-M. Pappa, M. Ferro, A. Lopresti, C. Acquaviva,
E. Mamessier, G. G. Malliaras, R. M. Owens, Adv. Mater. 2017, 29,
1605744.

[35] S. Middya, V. F. Curto, A. Fernández-Villegas, M. Robbins, J. Gurke,
E. J. M. Moonen, G. S. Kaminski Schierle, G. G. Malliaras, Adv. Sci.
2021, 8, 2004434.

[36] S. Ouyang, Y. Xie, D. Zhu, X. Xu, D. Wang, T. Tan, H. H. Fong, Org.
Electron. 2014, 15, 1822.

[37] V. Kostianovskii, B. Sanyoto, Y.-Y. Noh, Org. Electron. 2017, 44, 99.
[38] P. Oldroyd, J. Gurke, G. G. Malliaras, Adv. Funct. Mater. 2023, 33,

2208881.
[39] P. G. Taylor, J.-K. Lee, A. A. Zakhidov, M. Chatzichristidi, H. H. Fong,

J. A. DeFranco, G. G. Malliaras, C. K. Ober, Adv. Mater. 2009, 21,
2314.

[40] R. Chen, X. Wang, X. Li, H. Wang, M. He, L. Yang, Q. Guo, S. Zhang,
Y. Zhao, Y. Li, Y. Liu, D. Wei, Sci. Adv. 2021, 7, eabg0659.

[41] Y.-Q. Zheng, Y. Liu, D. Zhong, S. Nikzad, S. Liu, Z. Yu, D. Liu, H.-C.
Wu, C. Zhu, J. Li, H. Tran, J. B.-H. Tok, Z. Bao, Science 2021, 373,
88.

[42] Y. Jiang, Z. Zhang, Y.-X. Wang, D. Li, C.-T. Coen, E. Hwaun, G. Chen,
H.-C. Wu, D. Zhong, S. Niu, W. Wang, A. Saberi, J.-C. Lai, Y. Wu, Y.
Wang, A. A. Trotsyuk, K. Y. Loh, C.-C. Shih, W. Xu, K. Liang, K. Zhang,
Y. Bai, G. Gurusankar, W. Hu, W. Jia, Z. Cheng, R. H. Dauskardt, G.
C. Gurtner, J. B.-H. Tok, K. Deisseroth, et al., Science 2022, 375, 1411.

[43] F. J. Touwslager, N. P. Willard, D. M. de Leeuw, Appl. Phys. Lett. 2002,
81, 4556.

[44] M. J. Kim, M. Lee, H. Min, S. Kim, J. Yang, H. Kweon, W. Lee, D.
H. Kim, J.-H. Choi, D. Y. Ryu, M. S. Kang, B. Kim, J. H. Cho, Nat.
Commun. 2020, 11, 1520.

[45] S. Wang, J. Xu, W. Wang, G.-J. N. Wang, R. Rastak, F. Molina-Lopez,
J. W. Chung, S. Niu, V. R. Feig, J. Lopez, T. Lei, S.-K. Kwon, Y. Kim,
A. M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J. B.-H.
Tok, Z. Bao, Nature 2018, 555, 83.

[46] A. Teichler, J. Perelaer, U. S. Schubert, J. Mater. Chem. C 2013, 1,
1910.

[47] P. Andersson Ersman, R. Lassnig, J. Strandberg, D. Tu, V. Keshmiri,
R. Forchheimer, S. Fabiano, G. Gustafsson, M. Berggren, Nat. Com-
mun. 2019, 10, 5053.

[48] S. R. Forrest, Nature 2004, 428, 911.
[49] S. Wustoni, T. C. Hidalgo, A. Hama, D. Ohayon, A. Savva, N. Wei,

N. Wehbe, S. Inal, Adv. Mater. Technol. 2020, 5, 1900943.
[50] S. Han, A. G. Polyravas, S. Wustoni, S. Inal, G. G. Malliaras, Adv.

Mater. Technol. 2021, 6, 2100763.
[51] M. Ghazal, M. Daher Mansour, C. Scholaert, T. Dargent, Y. Coffinier,

S. Pecqueur, F. Alibart, Adv. Electron. Mater. 2022, 8, 2100891.
[52] M. Cucchi, H. Kleemann, H. Tseng, G. Ciccone, A. Lee, D. Pohl, K.

Leo, Adv. Electron. Mater. 2021, 7, 2100586.
[53] K. Janzakova, M. Ghazal, A. Kumar, Y. Coffinier, S. Pecqueur, F.

Alibart, Adv. Sci. 2021, 8, 2102973.
[54] M. Cucchi, C. Gruener, L. Petrauskas, P. Steiner, H. Tseng, A.

Fischer, B. Penkovsky, C. Matthus, P. Birkholz, H. Kleemann, K. Leo,
Sci. Adv. 2021, 7, eabh0693.

[55] X. Strakosas, H. Biesmans, T. Abrahamsson, K. Hellman, M. S.
Ejneby, M. J. Donahue, P. Ekström, F. Ek, M. Savvakis, M. Hjort,
D. Bliman, M. Linares, C. Lindholm, E. Stavrinidou, J. Y. Gerasimov,
D. T. Simon, R. Olsson, M. Berggren, Science 2023, 379, 795.

[56] R. J. DeBerardinis, C. B. Thompson, Cell 2012, 148, 1132.
[57] A.-M. Pappa, O. Parlak, G. Scheiblin, P. Mailley, A. Salleo, R. M.

Owens, Trends Biotechnol. 2018, 36, 45.
[58] S. Sharma, H. Byrne, R. J. O’Kennedy, Essays Biochem. 2016, 60, 9.
[59] L. S. Liu, F. Wang, Y. Ge, P. K. Lo, ACS Appl. Mater. Interfaces 2021,

13, 9329.
[60] J. Peña-Bahamonde, H. N. Nguyen, S. K. Fanourakis, D. F.

Rodrigues, J. Nanobiotechnol. 2018, 16, 75.

[61] M. Sireesha, V. Jagadeesh Babu, A. S. Kranthi Kiran, S. Ramakrishna,
Nanocomposites 2018, 4, 36.

[62] N. K. Guimard, N. Gomez, C. E. Schmidt, Prog. Polym. Sci. 2007, 32,
876.

[63] E. Macchia, R. A. Picca, K. Manoli, C. D. Franco, D. Blasi, L. Sarcina,
N. Ditaranto, N. Cioffi, R. Österbacka, G. Scamarcio, F. Torricelli, L.
Torsi, Mater. Horiz. 2020, 7, 999.

[64] A. Marks, S. Griggs, N. Gasparini, M. Moser, Adv. Mater. Interfaces
2022, 9, 2102039.

[65] S. T. M. Tan, A. Giovannitti, A. Melianas, M. Moser, B. L. Cotts, D.
Singh, I. McCulloch, A. Salleo, Adv. Funct. Mater. 2021, 31, 2010868.

[66] S. T. M. Tan, S. Keene, A. Giovannitti, A. Melianas, M. Moser, I.
McCulloch, A. Salleo, J. Mater. Chem. C 2021, 9, 12148.

[67] R. A. Picca, K. Manoli, E. Macchia, L. Sarcina, C. Di Franco, N. Cioffi,
D. Blasi, R. Österbacka, F. Torricelli, G. Scamarcio, L. Torsi, Adv.
Funct. Mater. 2020, 30, 1904513.

[68] A. Koklu, D. Ohayon, S. Wustoni, A. Hama, X. Chen, I. McCulloch,
S. Inal, Sens. Actuators, B 2021, 329, 129251.

[69] X. Ji, H. Y. Lau, X. Ren, B. Peng, P. Zhai, S.-P. Feng, P. K. L. Chan, Adv.
Mater. Technol. 2016, 1, 1600042.

[70] A.-M. Pappa, V. F. Curto, M. Braendlein, X. Strakosas, M. J. Donahue,
M. Fiocchi, G. G. Malliaras, R. M. Owens, Adv. Healthcare Mater.
2016, 5, 2295.

[71] E. Bihar, S. Wustoni, A. M. Pappa, K. N. Salama, D. Baran, S. Inal,
npj Flexible Electron. 2018, 2, 1.

[72] J. Chen, X. Zheng, Y. Li, H. Zheng, Y. Liu, S.-i. Suye, J. Electrochem.
Soc. 2020, 167, 067502.

[73] C. Peruzzi, S. Battistoni, D. Montesarchio, M. Cocuzza, S. L.
Marasso, A. Verna, L. Pasquardini, R. Verucchi, L. Aversa, V. Erokhin,
P. D’Angelo, S. Iannotta, Sci. Rep. 2021, 11, 9380.

[74] S. L. Bidinger, S. T. Keene, S. Han, K. W. Plaxco, G. G. Malliaras, T.
Hasan, Sci. Adv. 2022, 8, eadd4111.

[75] A. Yang, Y. Li, C. Yang, Y. Fu, N. Wang, L. Li, F. Yan, Adv. Mater. 2018,
30, 1800051.

[76] M. Ghittorelli, L. Lingstedt, P. Romele, N. I. Crăciun, Z. M. Kovács-
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